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Abstract -This review considers scalability challenges that have arisen from PdM models in the automobile industry in order to 

establish applications across various vehicle types and engine configurations. The review targets assessing whether contemporary 

PdM solutions work properly to alleviate heterogeneity data problems, the variabilities found within engines, as well as problems 

associated with limited real-time performances. Other core challenges include heterogeneous integration of sources for data, 

variations of different architectures in different models, and keeping the accuracy at big volumes of data. In the paper, several such 

solutions are being discussed, such as GRU with temporal data, hybrid AI-physics models, ensemble methods, and techniques of data 

fusion. Despite significant improvements in the adaptability of models and scalability, these solutions carry limitations such as 

computational complexity and real-time processing. The review concludes further innovation is in order to improve the efficiency and 

the generalizability of PdM models across varied vehicle types as well as conditions of operation. 

 

Index Terms - Predictive Maintenance (PdM), Scalability Challenges, Data Fusion 

I.INTRODUCTION  

Predictive maintenance is becoming more vital in the automobile industry as it can predict possible vehicle failure to reduce downtime 

and maintenance costs. The predictive models of maintenance make use of data analytics, machine learning, and Internet of Things 

technologies to monitor real-time vehicle health [1]. This is very important for ensuring the reliability and longevity of different 

vehicle fleets, such as passenger cars, commercial vehicles, and autonomous systems [2]. 

With many benefits, the difficult part of vertically scaling predictive models is that they can work with many types of vehicles and 

different configurations of engines. Variability in the design of engines, operational environment, and availability of sensor data all 

interfere with achieving a universally acceptable model design [3]. Furthermore, combining variably sourced data from systems like 

GIS and operation-specific data for vehicle makes it difficult to predict outcomes [4]. 

This paper will evaluate the solutions that exist presently for these scaling issues. [5] proposed a Gated Recurrent Unit neural 

networks-based constrained-time-based algorithm with the aim of improving model generalization with temporally varying data 

inputs. [6]proposed an AI-integrated physics-based model with traditional sensor data to cope with variability in autonomous vehicle 

systems. 

II.OVERVIEW OF SCALABILITY CHALLENGES IN PREDICTIVE MAINTENANCE 

Predictive maintenance (PdM) models have significantly improved vehicle reliability but face notable scalability challenges when 

applied to diverse vehicle types and engine configurations [7]. As illustrated in Figure 1 these challenges are driven by factors such as 

data heterogeneity, engine configuration variability, model adaptation requirements, and real-time performance constraints. 

Vehicle sensors, telematics, and operational data vary significantly across different manufacturers and models, which hinders data 

integration and model training. According to [8], data source variability directly impacts the precision of predictive models, and that 

includes IoT sensors. Data sparsity, as indicated by [9], makes scalability harder, especially for cases with limited maintenance 

records. All these gaps require robust data fusion techniques for harmonizing data from heterogeneous systems [10]. The other 

scalability issue that comes in terms of diversity relates to engine type, such as the contrast between an ICE and an EV. According to 

[11], the maintenance strategy for power systems of an EV is different from that of the traditional ICE system. Again, architectural 

styles of engines, for instance, inline vs. V-type, affect predictive model accuracy since it depends on various operational dynamics of 

engines, which were presented in [12]. 

A transfer of models across vehicle types creates a need for generalizable algorithms. As argued by [13], an adaptable framework is 

required that can be applied to different maintenance scenarios without extensive reengineering. Even [14] suggested data-driven 

approaches for improving the transferability of a model between industrial and commercial vehicle fleets.One more severe challenge 

to handling massive data sets in real-time is maintaining precision. [15] provided scalable IoT platforms that optimized the real-time 

performance, whereas [16] developed graph-based neural networks that handle the high computation loads efficiently.The state-of-

the-art techniques to overcome the abovementioned issues are advanced machine learning models like SCALE-Net [16], ensemble 

methods [17], and integrated deep learning frameworks [2]. These techniques are capable of enhancing fault detection and minimizing 

downtime while being scalable 
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Fig.1 Challenges in predictive maintenance 

III.CURRENT SOLUTIONS TO SCALABILITY CHALLENGES 

There are significant scalability challenges for predictive maintenance, and solving these requires innovative solutions toward better 

generalizing, adapting to heterogeneous environments, and integrating diverse data sources [18]. This discussion presents a few 

promising approaches in recent research. In the context of the temporal data variation, [5] introduced a time-constrained-based 

algorithm by the use of GRU networks. Such models operate on sequential time-series data for the recognition of trends in the 

performance of engines and identification of anomalies with precision. The models GRU can manage the dependencies over time very 

efficiently with low computational costs; therefore, these are more apt for large-scale PdM applications. Generalization is also better 

across a range of operational vehicle datasets for such scenarios with diverse multi-fleet operations, hence enhanced performance. 

[6] proposed a hybrid that combines AI with physics-based methods. The methodology depicted here is how it combines sensor data 

with physical models to provide a representation of the dynamic behavior of autonomous systems. This then increases the adaptability 

of a PdM model for A-S/A-S. The physics within this model brings into account many vehicle architectures as well as operational 

conditions to the AI-based predictions [6] 

Scaling up significantly, ensemble methods have used stacking, boosting, and bagging. [17] recently proposed a system of predictive 

maintenance for armored vehicles using an ensemble approach. Incorporation of multiple algorithms such as Light Gradient Boosting 

as well as Random Forest improves adaptability for different types of vehicle, and enables the possibility of getting better accuracy 

and strength in handling the performance of an armored vehicle.Data fusion has emerged as a scalable solution since it integrates 

sensor readings, telematics, and maintenance history data. [15] proposed a scalable IoT platform for smart machine maintenance 

through the integration of heterogeneous data streams for real-time analysis. In the same vein, [19] tested the adaptability of the data 

management system, which smoothly integrates with the different data inputs in predictive models [14,17].[20]proposed a privacy-

preserving data aggregation framework using the Paillier cryptosystem to address issues of privacy regarding vehicle data collection. 

This method ensures confidentiality and allows for scalability, which is very important for real-time predictive maintenance tasks 

[18]. 

[19] proposed a hybrid ensemble framework that utilized modified Cox Proportional Hazard models combined with Long Short-Term 

Memory networks for fleet maintenance. This proposed method is equipped for multi-source data and does achieve better scalability 

and adaptability over varying vehicle configurations [21]. [11] proposed a framework for ML-based predictive maintenance that is 

designed for electric vehicle power systems. It integrates data from operation and failure modes, which enhances the scalability and 

lifetime of systems. [14] developed a predictive analytics tool that schedules the maintenance of a vehicle based on historical data 

patterns. This system, currently deployed in industrial fleets, proves to be scalable across different environments of operation [14]. 

IoT-based middleware platforms can ingest and persist data in real-time for predictive analytics. 

IV. COMPARATIVE EVALUATION OF SOLUTIONS 

The scalability issues associated with the predictive maintenance PdM models must be handled with a mixture of innovative ideas and 

their respective pros and cons [23]. Here, the comparisons among the above-presented solutions, in terms of how effective and 

scalable they can be, coupled with real-world application aspects, focusing on how such solutions can respond to the demands related 

to multiple varieties of vehicles and engine arrangements. Table 1 and Table 2 Summarizes the key characteristics, advantages, 

challenges, and best fit use cases of each of the Solution options for quick comparison of how they solve the scalability problem of 

predictive maintenance. 

1. TEMPORAL DATA MANAGEMENT AND MODEL GENERALIZATION 

[5] Present a time-constrained algorithm developed with Gated Recurrent Unit networks to address variations in temporal data. GRUs 

are highly effective for capturing sequential dependencies and trends in data from engine performance, which also makes them an 

appropriate choice to handle time series data in tasks related to predictive maintenance. Such algorithms have minimal computational 

overhead and could be scaled appropriately for real-time applications across wide fleets. However, whereas GRUs do generalize 

effectively across multiple different datasets, the reliance on sequential data may be a limitation in systems involving complex non-

sequential relationships, such as in some types of hybrid or autonomous vehicles. 
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In contrast, [6] proposed a hybrid AI-physics model that integrates sensor data with physical models to simulate dynamic vehicle 

behaviors, especially in autonomous and semi-autonomous systems. This approach enhances adaptability by accounting for the 

complexities of various vehicle types and operational conditions. While this hybrid approach significantly improves the robustness of 

PdM models, it is done at the expense of more sophisticated computationally expensive and domain-sensitive knowledge, which may 

hinder such scalability in practice where model adaptation for a vast number of vehicle types has to be done quickly. 

2. ENSEMBLE METHODS AND ADAPTABILITY 

The ensemble methods showed great capability to enhance the adaptability of PdM models to different vehicle types. Among the 

approaches developed by [17] are stacking, boosting, and bagging. The ensemble system improves the model's robustness while 

enhancing the whole accuracy by combining the strengths of a multiple algorithm, such as Light Gradient Boosting and Random 

Forest. These methods provide better generalization and fault detection performance when scaling across heterogeneous data sources; 

hence, they could be highly appropriate for a scenario involving multiple fleets. However, as the number of the algorithms grows, 

ensemble methods could become computationally demanding, posing a problem in a real-time prediction environment.  

[21] introduced a hybrid ensemble framework that combined Cox Proportional Hazard models with Long Short-Term Memory 

(LSTM) networks. This framework effectively handled multi-source data, which showed the hybrid to be robustly scalable and 

adaptable for different vehicle configurations. The hybrid model achieved a better balance between the interpretability of traditional 

statistical models and the level of accuracy acquired from deep learning approaches. Again, similar to other hybrid models, its 

complexities and training requirements will limit its ready deployment in many real-world applications, especially in an environment 

where diversified vehicle fleets require different handling algorithms. 

Solution Key Features Strengths Challenges Best Use Case 

GRU-based 

Temporal Model 
[5] 

Constrained-time-

based algorithm 

using Gated 

Recurrent Unit 

(GRU) networks 

Efficient at 

capturing temporal 

dependencies, low 

computational 

overhead 

Limited in handling 

complex non-

sequential 

relationships 

Scalable PdM for 

time-series data in 

multi-fleet 

scenarios 

Hybrid AI-

Physics Model 
[6] 

Combines AI with 

physics-based 

models for 

autonomous 

systems 

Enhances 

adaptability for 

complex vehicle 

architectures, 

accounts for 

dynamic behavior 

Requires significant 

computational 

resources and domain 

knowledge 

Autonomous and 

semi-autonomous 

vehicles with 

diverse operational 

conditions 

Ensemble 

Methods [15] 

Combines 

algorithms like 

Light Gradient 

Boosting and 

Random Forest 

Increases 

robustness, 

accuracy, and 

adaptability across 

vehicle types 

Computationally 

intensive, may 

struggle with real-

time constraints 

Multi-fleet PdM 

with diverse 

vehicle types and 

sensor 

configurations 

Hybrid 

Ensemble 

Framework [21] 

Combines Cox 

Proportional 

Hazard models 

and LSTM 

networks 

Balances 

interpretability and 

accuracy, manages 

multi-source data 

effectively 

Complexity may limit 

immediate 

deployment, 

resource-intensive 

Fleet maintenance 

with varying 

vehicle 

configurations 

Data Fusion for 

Real-Time PdM 
[15], [19] 

Integrates sensor 

data, telematics, 

and maintenance 

history for real-

time analysis 

Scalable, improves 

accuracy by 

combining multiple 

data sources 

Dependent on data 

quality and 

infrastructure, 

challenges in 

decentralized 

environments 

PdM in 

environments with 

stable data 

connectivity and 

high-quality data 

Table 1: Comparative Evaluation of Solutions 
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Solution Key Features Strengths Challenges Best Use Case 

Privacy-

Preserving Data 

Aggregation [20] 

Paillier 

cryptosystem-

based aggregation 

framework 

Ensures data 

privacy while 

maintaining 

scalability for real-

time tasks 

Computational 

overhead from 

encryption can slow 

down real-time 

processing 

Real-time PdM in 

regulated 

environments 

with privacy 

concerns 

EV-Specific 

Predictive 

Framework [11] 

ML-based model 

tailored for 

electric vehicle 

(EV) power 

systems 

Specifically 

designed for EVs, 

enhances longevity 

and scalability 

Limited general 

applicability to non-

EV vehicle types 

Electric vehicle 

fleets or systems 

with unique 

maintenance 

needs 

Historical Data-

Driven 

Maintenance 

Tool [14] 

Analyzes 

historical patterns 

to schedule 

maintenance 

Scalable across 

various operational 

environments, 

adaptable to 

different vehicles 

Limited real-time data 

processing 

capabilities 

Industrial fleets 

and diverse 

vehicle fleets with 

historical data 

IoT-based 

Middleware for 

PdM [15] 

Scalable IoT 

platform for real-

time data 

ingestion and 

predictive 

analytics 

Enhances data 

reliability, supports 

scalable PdM 

solutions 

Requires 

infrastructure 

improvements, 

challenges with 

network connectivity 

Real-time data 

processing in 

connected 

environments 

Table 2: Comparative Evaluation of Solutions 

3. DATA FUSION AND REAL-TIME PERFORMANCE 

Scalability challenges can be overcome using data fusion techniques. Data sources in the integration include heterogeneous ones like 

sensor readings, telematics, and maintenance histories. According to [15], there exists a scalable IoT platform integrating various 

streams of data in real-time predictive maintenance. This is a platform that enhances the reliability and accuracy of PdM systems 

through the integration of different data sources, although its scalability relies on the capability of fetching big volumes of data 

efficiently. Along the same line, [19] tested and validated an elastic data management system capable of allowing seamless 

incorporation of many types of inputs into prediction models. These both solutions adequately take care of processing of real-time 

data but will meet their limits within environments of irregular data quality and network connectivity. 

In contrast, the data aggregation framework based on privacy preservation proposed by [20] ensures confidentiality while maintaining 

scalability for real-time predictive maintenance tasks. The solution will particularly be of relevance in very regulated environments 

where privacy of data of vehicles is of utmost importance. However, such added complexity would affect processing speed, and it 

would not be so ideal for decisions where the importance of speed for making the decision for maintenance is crucial. 

4. INDUSTRY-SPECIFIC AND VEHICLE TYPE TAILORING 

The solutions proposed also differ in the application to particular vehicle types. [11] customized a predictive maintenance framework 

for electric vehicle power systems, which included operational data and failure modes to extend system life. This is a very niche 

approach and highly specialized, but offers significant scalability improvements in PdM models for electric vehicles. Its application to 

other vehicle types would, however, necessitate significant modification and thus its general applicability is somewhat limited. 

Contrary to this, [14] designed a predictive analytics tool used for fleet maintenance that has proved scalable across various 

operational environments. The system, as applied to industrial fleets, emphasizes the adaptability of data-driven models into real-

world scenarios. Being able to focus on historical patterns of data, it applies to all ranges of vehicles and therefore is the most versatile 

solution for different kinds of fleets. 
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5. APPLICABILITY IN REAL-WORLD ENVIRONMENTS 

Finally, their ability to manage real-time data and accommodate multiple vehicle types must enable practical deployment in 

operational settings for real-world applicability. Even though solutions like the GRU-based algorithms proposed by [5] and ensemble 

methods from [17] are scalable and efficient in multi-fleet environments, their computational demand is likely a limitation in very 

dynamic or resource-constrained environments. The hybrid models are characterized by robust adaptability but tend to be more 

resource-intensive and could, thus, prove limiting in some commercial and industrial settings [6], [21].In contrast, the data fusion 

system and IoT platform [15], [19] appear promising for predictive maintenance in real-time but share related challenges with respect 

to the infrastructure, data quality, and privacy. Such a solution is most adapted to conditions of stable connectivity and high quality of 

data while failing in locations where connectivity tends to be extremely variable or highly decentralized. 

Each of the above solutions presents its own benefits when it comes to overcoming the challenge of scalability in predictive 

maintenance for a variety of vehicles and different configurations of engines. Ensemble methods and hybrid models are especially 

robust and flexible, but they are too complex computationally and may not scale well for real-time applications. Data fusion systems 

and IoT platforms seem promising for the real-time integration of data, though infrastructure must improve to be effective at scale. 

This choice will be made according to the needs of the fleet, in terms of type of vehicle, amount of computing power, and real-time 

capability desired. 

V. CONCLUSIONS 

This review reviews the scalability challenge for predictive maintenance (PdM) models within the automobile sector, in light of 

varied types of vehicles and configurations of their engines. As a result of applying predictive maintenance models, vehicles' 

reliability has significantly improved. There are still challenges of scalability for the predictive maintenance model with these 

challenges which include heterogeneity data, variability of the engine configuration, and the real-time optimization performance. The 

solutions discussed, namely, temporal data management using GRU, hybrid AI-physics models, ensemble methods, data fusion, and 

IoT platforms, represent important advances in being able to address the challenges. Each of the solution methods involved has its 

distinct strengths and is limited to what is present for that certain operational setting. 

 

Some key insights derived from this survey are that no silver bullet can address all scalability issues, that ensemble methods and 

hybrid models work pretty well for enhancing the adaptability of the model on various vehicle types, and still they have relatively 

high computational complexity and, thus, scalability could be problematic for real-time applications. Data fusion techniques and IoT 

platforms are promising technologies for real-time predictive maintenance but are scalable based on infrastructure and data quality. 

The inclusion of privacy-preserving methods also brings complexities that may affect processing speeds but is very significant in 

regulated environments. 

 

The following open challenges look into the future for further research: Optimize vehicle engine health predictions by using 

innovative ensemble models in order to maximize accuracy with scaling properties for varying types and configurations of vehicles; 

integrating data sources that include multiple vehicle types, sensor technologies, and maintenance history. Further research in more 

advanced ensemble techniques, such as stacking and gradient boosting, should be done to further improve the accuracy and robustness 

of PdM systems. Future research in this area should aim at making PdM models scalable and computationally efficient for effective 

deployment in real-world environments with diverse inputs and real-time constraints. 

 

Study suggests there is a need to overcome scalability issues in predictive maintenance so that the benefits offered by such systems 

can be fully exploited for diverse and dynamic vehicle fleets. The models need to be ranked according to their precision, adaptability, 

and computational efficiency in order to respond to increasing demands for reliable cost-effective maintenance for various types and 

conditions of operation. Future research should be on innovative methods and frameworks that could overcome the limitations of 

current systems and provide scalable, high-performing predictive maintenance systems. 

 

VI. REFERENCES 

[1] C. Chen et al., “Predictive maintenance using cox proportional hazard deep learning,” Advanced Engineering Informatics, vol. 44, 

p. 101054, 2020, doi: https://doi.org/10.1016/j.aei.2020.101054. 

[2] M. Nidhi, M. H. Abhijeet, M. Akanksha, and S. D. Sushree, “Automobile Maintenance Prediction Using Integrated Deep Learning 

and Geographical Information System,” Indian Journal of Information Sources and Services, vol. 14, no. 2, pp. 109–114, 2024. 

[3] T. N. De Freitas, R. Gaspar, R. G. Lins, and E. J. H. Junior, “Data-Driven Methodology for Predictive Maintenance of 

Commercial Vehicle Turbochargers,” in 2023 15th IEEE International Conference on Industry Applications (INDUSCON), 2023, pp. 

807–814. 

[4] C. Chen, Y. Liu, X. Sun, C. Di Cairano-Gilfedder, and S. Titmus, “An integrated deep learning-based approach for automobile 

maintenance prediction with GIS data,” Reliab Eng Syst Saf, vol. 216, p. 107919, 2021. 

[5] Q. Wang, H. Wang, and H. Pan, “A constrained-time-based algorithm for vehicle maintain prediction,” in 5th International 

Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023), 2023, pp. 352–359. 

[6] R. Aravind and C. V. Shah, “Physics Model-Based Design for Predictive Maintenance in Autonomous Vehicles Using AI,” 

International Journal of Scientific Research and Management (IJSRM), vol. 11, no. 09, pp. 932–946, 2023. 



TIJER || ISSN 2349-9249 || © January 2025, Volume 12, Issue 1 || www.tijer.org 

TIJER2501082 TIJER – INTERNATIONAL RESEARCH JOURNAL  www.tijer.org a624 
 

[7] Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of predictive maintenance: Systems, purposes and approaches,” arXiv 

preprint arXiv:1912.07383, pp. 1–36, 2019. 

[8] Ö. Güven and H. Şahin, “Predictive Maintenance Based On Machine Learning In Public Transportation Vehicles,” Mühendislik 

Bilimleri ve Araştrmalar Dergisi, vol. 4, no. 1, pp. 89–98, 2022. 

[9] S. Voronov, M. Krysander, and E. Frisk, “Predictive maintenance of lead-acid batteries with sparse vehicle operational data,” Int J 

Progn Health Manag, vol. 11, no. 1, 2020. 

[10] O. Ö. Ersöz, A. F. \.Inal, A. Aktepe, A. K. Türker, and S. Ersöz, “A systematic literature review of the predictive maintenance 

from transportation systems aspect,” Sustainability, vol. 14, no. 21, p. 14536, 2022. 

[11] P. Gupta, A. B. Gurulakshmi, G. Nijhawan, P. Praveen, L. K. Tyagi, and R. A. Hussien, “A review on Machine Learning 

Enhanced Predictive Maintenance for Electric Vehicle Power Electronics: A Pathway to Improved Reliability and Longevity,” in E3S 

Web of Conferences, 2024, p. 3017. 

[12] C. Chen et al., “Predictive maintenance using cox proportional hazard deep learning,” Advanced Engineering Informatics, vol. 

44, p. 101054, 2020. 

[13] S. Barapatre, O. Gangurde, R. Bibwe, and S. Tiwaskar, “Predictive Maintenance Framework for Urban Metro Vehicles,” in 2024 

5th International Conference for Emerging Technology (INCET), 2024, pp. 1–5. 

[14] S. Mishra et al., “Machine Learning Supported Next-Maintenance Prediction for Industrial Vehicles.,” in EDBT/ICDT Wor 

kshops, 2020, p. 24. 

[15]P. Moens et al., “Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications,” 

Sensors, vol. 20, no. 15, p. 4308, 2020. 

[16] H. Jeon, J. Choi, and D. Kum, “SCALE-Net: Scalable vehicle trajectory prediction network under random number of interacting 

vehicles via edge-enhanced graph convolutional neural network,” in 2020 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (IROS), 2020, pp. 2095–2102. 

[17] P. Sengupta, A. Mehta, and P. S. Rana, “Predictive Maintenance of Armoured Vehicles using Machine Learning Approaches,” 

arXiv preprint arXiv:2307.14453, 2023. 

. 

  

 

 

 


