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Abstract— Estimation of construction costs is considered as very important for effective budgeting, planning, and decision-making in
civil infrastructure projects. The widely used traditional methods of construction cost estimation often rely on historical trends of the
cost analysis, expert judgment, and manual calculations, the processes which can be time-consuming and prone to human error. This
study proposes a machine learning-based approach to automate and enhance the accuracy of construction cost prediction using a
multi-output regression framework a comprehensive dataset of 10,000 construction instances was compiled from various sources; it
includes parameters such as material types, structural categories, area in square feet, and labour specifications among others.
Multiple regression models including Random Forest, XGBoost, Gradient Boosting, Decision Tree, and Linear Regression were
trained and evaluated using standard performance metrics which include Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R? Score. Among these, XGBoost outperformed all others with an R? score exceeding 0.999. To facilitate easy use, a
Flask web application has been developed accordingly to deploy said models and deliver immediate predictions predicated-upon
dynamic user inputs thus rendering estimation seamless & facilitating scalability. The proposed solution not only streamlines the
estimation process but also provides a scalable and interpretable tool for engineers, contractors, and stakeholders. Experimental
results demonstrate that ensemble learning models are highly effective in capturing the nonlinear relationships inherent in
construction data, thereby offering a robust alternative to conventional estimation practices.

Keywords— Construction Cost Estimation, Machine Learning, Multi-output Regression, XGBoost, Random Forest, Web
Application, Civil Engineering, Predictive Modelling.

I. INTRODUCTION

Advanced computational techniques and machine learning algorithms have improved the traditional and
software based construction cost estimation approaches. Various models have been developed to enhance the
accuracy and efficiency of cost predictions in construction projects. For example if we consider, the use of improved
support vector machines (SVM) optimized by particle swarm optimization (PSO) has shown promising results,
achieving an average prediction deviation as low as 1.57% (Zhang & Song, 2022). Similarly, the BP neural network,
which minimizes mean square errors through error gradient descent, has been effectively employed to forecast
construction costs with high accuracy (Wang, 2018). The integration of Building Information Modeling (BIM) with
Elman Neural Networks (ENN) further enhances prediction accuracy by utilizing digital and visual data from
intelligent building models, achieving a root mean squared error (RMSE) of less than 75 and a determination
coefficient greater than 0.95 (Zhang & Mo, 2023). Additionally, the Random Forest algorithm, optimized by the
Bird Swarm Algorithm (BSA), has demonstrated superior performance in predicting construction costs, with a
maximum relative error of only 1.24% (Zheng et al., n.d.). The application of artificial intelligence (Al) methods,
including neural networks and case-based reasoning, has also been explored to address the challenges of large errors
and long preparation times in cost estimation (‘“Research on Intelligent Prediction of Engineering Cost Based on
Artificial Intelligence,” 2023). Moreover, the integration of quantum computing techniques with traditional
algorithms like Random Forest has been proposed to further improve the efficiency and accuracy of cost predictions
(Lakshana et al., 2024). These advancements highlight the potential of combining various machine learning and
optimization techniques to develop robust construction cost prediction systems that can adapt to the dynamic
conditions of construction projects, ultimately supporting better cost management and decision-making in the
industry (Rayabharapu et al., 2025) (Shi & Li, 2010).

Estimating construction costs is a vital aspect of construction management, playing a crucial role in
determining project success through effective budgeting, resource allocation, and profitability. The inherently
complex nature of construction projects necessitates precise cost estimation due to factors like inflation, market
conditions, and specific elements such as structural systems and site environments (Ali et al., 2022; Ameya, 2025;
G.C.Sarode, 2020). The adoption of advanced technologies like Artificial Intelligence (Al) and Building
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Information Modeling (BIM) has improved the accuracy of these estimations. Al techniques such as extreme
gradient boosting and artificial neural networks have shown high effectiveness in predicting costs by managing
intricate non-linear challenges effectively (Ali et al., 2022) (G.C.Sarode, 2020). Similarly, BIM-based tools provide
more reliable cost assessments than traditional methods by considering diverse aspects beyond just floor space
beyond just floor area (Chandra & Yuliana, 2024) (Yang et al., 2022). The importance of continuous training and
development for construction estimators is also emphasized, as it equips them with the necessary skills to utilize
these advanced tools and methodologies, thereby reducing estimation errors and enhancing project outcomes (-,
2023). Moreover, organizational controls play a significant role in improving cost estimation performance,
especially in complex projects, by ensuring that the right control modes are implemented (Fazil et al., 2023). The
use of machine learning methods, such as adaptive neuro-fuzzy inference systems and support vector machines,
further supports the predictability and accuracy of cost estimations, outperforming traditional methods like earned
value management-based approaches (Yalcin et al., 2024). Overall, the development and application of sophisticated
cost estimation models are crucial for the effective management and successful completion of construction projects,
providing stakeholders with reliable data for informed decision-making (Gilson & Vanreyk, 2016) (Naimi, 2023).

This paper discusses the design and implementation of multiregrrssor construction cost estimation system that
integrates various machine learning algorithms and optimization techniques to enhance prediction accuracy and
reduce errors in cost estimation. This system aims to streamline the estimation process and improve decision-
making efficiency in construction management.

II. LITERATURE REVIEW

Before starting the research work, a thorough literature review was conducted to understand the currently used
techniques for construction cost estimation. Zheng et al. proposed a Random Forest model optimized by the Bird
Swarm Algorithm (BSA), achieving a maximum relative error of only 1.24% and demonstrating superior enterprise-
level forecasting accuracy. Magdum et al. implemented neural networks and multilayer perceptron (MLP)-based
models using six key material features, finding MLPs better on training sets while neural networks generalized well
on unseen data, with the ELU activation function performing best. Xu et al. introduced a hybrid model using t-SNE
for dimensionality reduction and an improved grey correlation algorithm, yielding a 5.1% increase in accuracy and
12.75% efficiency gain. Ye et al. enhanced BP neural networks with a PSO-guided optimization approach,
effectively handling local minima and improving forecasting accuracy. Tayefeh Hashemi et al. presented a
systematic review of three decades of ML models for cost estimation, recommending hybrid approaches to manage
high-risk project uncertainty. Zhang et al. developed a BIM-ENN framework achieving over 95% accuracy in
intelligent building projects while effectively processing time-sequential data. Jirait et al. created a GUI-based ML
system for house construction cost estimation, emphasizing future integration with user-friendly interfaces. Park and
Yun proposed a BIM-based deep learning model for schematic design phase cost prediction, showing higher
accuracy by integrating design and building attributes. Yaseen et al. introduced a hybrid GA-ANN-SVM model for
predicting construction cost and duration, where GA optimized feature selection, boosting ANN and SVM
performance. Similarly, Liu et al. applied a GA-enhanced BP neural network, reporting significant improvements in
accuracy and convergence over traditional BP networks.

II1. RESEARCH METHODOLOGY

The development of the construction cost estimation system was executed in four phases: dataset collection and
curation, data preprocessing, model development and training, and Flask-based deployment. Each phase is explained
in detail below.

A. Dataset Collection and Curation

To construct a reliable prediction system, a comprehensive dataset comprising 10,000 instances was collected
from multiple sources. These sources included government tender websites, construction contractor records,
publicly available real estate project estimates, and market rate sheets for construction materials. The primary aim
was to cover a wide range of project types, locations, and material quality grades to ensure generalization. Each data
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entry captured key input attributes such as the category of location (urban, semi-urban, rural), built-up area in square
feet, quality indicators for various construction components like cement, steel, bricks, and flooring, and the expected
duration for project completion. The target outputs were detailed and included estimated quantities and associated
costs of individual materials, as well as the total construction cost. This dataset provided a rich foundation for
training a robust machine learning model capable of predicting detailed cost estimates for varying construction
scenarios.

B. Data Preprocessing

Before we use the data to train the machine learning pipeline, preprocessing was carried out to improve
consistency and model compatibility. All categorical variables representing material quality were encoded
numerically (e.g., “Basic Grade” = 0, “Medium Grade” = 1, “Premium Grade” = 2). Missing or inconsistent entries
were handled through imputation or removal, and feature scaling was performed where necessary. The dataset was
then split into features (input variables) and multiple target outputs (quantities and costs). An 80:20 train-test split
was applied to ensure fair model evaluation.

C. Model Development and Training

For predictive modeling, multiple machine learning algorithms were implemented using the
MultiOutputRegressor wrapper to handle the multi-target regression task. The models included RF Regressor,
Gradient Boosting Regressor, XGBoost, Decision Tree Regressor and Linear Regression. Each model was trained
on the same training set and evaluated using key regression metrics: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R-squared Score (R?). Among these models which we trained, the XGBoost Regressor
achieved the best overall performance giving the lowest MAE and RMSE values and the highest R? score, making it
the ideal candidate for deployment.

D. Deployment Via Flask Application

To make the system accessible to non-technical users such as civil engineers and contractors, a user-friendly
web interface was developed using the Flask framework. The interface provides a secure login and allows users to
input various construction project parameters via dropdowns and text fields. Upon submission, the application
processes the input through the trained XGBoost model and displays predicted quantities and costs for individual
materials, along with the total estimated cost. This real-time prediction system enables users to efficiently plan
budgets and make material procurement decisions.

The architecture diagram of the flow of the project is as shown below in Figure 1 below:

Dataset Collection (10,000 samplesjinin-
Govt sourcas'n- Cantractarsin- Cnlina ——
miarkal rales

Model Training (MultiQutputRegressorfinin-
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Fig.1: Architecture Diagram of the System
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The proposed system architecture begins with collecting a diverse dataset of 10,000 construction cost records
from government rate schedules, contractor cost sheets, and online market rates to capture regional and quality-
based variations. The data then undergoes preprocessing, including label encoding for categorical material grades,
imputation of missing values, and feature scaling to ensure consistency and readiness for modeling. A multi-output
regression approach was applied using algorithms such as Random Forest, XGBoost, Linear Regression, and
Gradient Boosting, with XGBoost achieving the best performance based on R? and error metrics. Finally, the trained
model was deployed through a Flask-based web application with a user-friendly HTML interface, enabling users to
input project parameters and receive detailed material-wise cost predictions, making the tool practical for builders,
engineers, and homeowners.

IV.RESULTS AND DISCUSSION

The dataset, containing 10,000 entries of construction project parameters, underwent comprehensive exploratory
data analysis to derive insights and validate its suitability for training predictive models. The univariate analysis was
done to handle or visualize the distribution of each and every variable in the dataset.

A. Exploratory Data Analysis

The EDA was done on different input variables. The distribution of the PlaceCategory feature indicated a
balanced representation of city types (Expensive, Medium, and Economical zones). Histograms plotted for
numerical features such as SquareFeet, CementCost, SteelCost, and TotalCost demonstrated positively skewed
distributions, reflecting real-world variability in material requirements and regional pricing. The univariate analysis
concluded with different plots for all the parameters which is shown below in Figure 2.
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Fig.2: Univariate Analysis of Dataset
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After that the corelation matrix was plotted as shown in Figure 3. A label-encoded correlation heatmap revealed
strong linear dependencies between corresponding quantity and cost features (e.g., SteelQuantity and SteelCost),
affirming the model's ability to capture logical pricing trends. Notably, TotalCost exhibited high correlation with
variables like SteelCost, CementCost, and SquareFeet, indicating their dominant influence in overall expenditure.
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Fig.3 Correlation Matrix

The dataset analysis revealed consistent multivariate trends between material quantities and their associated
costs, as confirmed through pair plots and KDE-based scatter matrices (e.g., CementQuantity vs. CementCost and
SteelQuantity vs. TotalCost), highlighting proportional scaling and meaningful dependencies. Distributional
assessment using histograms and boxplots indicated that TotalCost was slightly right-skewed with a wider spread in
higher-cost city categories, aligning with real-world scenarios where factors like material grade, region, and square
footage drive nonlinear cost increases. Skewness and kurtosis analysis further showed moderate right skew in
variables such as SteelCost, CementCost, and TotalCost, reflecting a few high-cost outliers, while kurtosis values
below 3 for most cost-related attributes suggested platykurtic distributions with lighter tails and fewer extreme
values compared to a normal distribution.
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In terms of model performance, tree-based models like Random Forest and XGBoost were resilient to these
distribution irregularities and performed robustly due to their non-parametric nature. In contrast, Linear Regression
displayed reduced accuracy (R? = 0.983) as it is sensitive to both skewness and outliers due to its assumption of
linearity and constant variance (homoscedasticity). Although data transformations like log-scaling or Box-Cox
transformation could further normalize the features, they were not required, as ensemble models performed
sufficiently well on the raw data. The Dataset and its impact on model training is given in Table 1.

TABLEI

IMPACT ON MODEL TRAINING AND RELATED OBSERVATIONS

Metric Interpretation Observation in Dataset Impact on Model Training
Skewness Measures asymmetry of data Moderate right skew in TotalCost, Tree-based models unaffected; Linear Regression
distribution CementCost, SteelCost performance degraded due to skew sensitivity
Kurtosis Measures tailedness; >3 = Values <3 — platykurtic Minimal impact on tree-based models; further
peaked, <3 = flat distribution (light tails) optimization via transformation not necessary
Linear Assumes linearity and Underperformed with R? =~ 0.983 Aftected by skew/outliers due to parametric nature
Regression normality
Ensemble Robust to non-normality and Delivered strong performance even No need for transformation (e.g., Box-Cox, log
Models skewed features with skewed data scaling) due to inherent resilience

Following exploratory analysis, a structured training phase was conducted using five regression algorithms
to evaluate their performance on the construction cost dataset. The models implemented include Random Forest,
Gradient Boosting, Decision Tree, Linear Regression, and XGBoost, all wrapped in a MultiOutputRegressor to
simultaneously predict multiple dependent variables (quantities and costs of materials, and total cost).

B. Model Training and Evaluation

Standard regression metrics were used to evaluate on the 20 percent data post training. The performance
obtained by training on different algorithms is given in Table 2.
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TABLE II

PERFORMANCE EVALUATION METRICS

Model MAE RMSE R? Score
Random Forest Low Low ~0.9998
Gradient Boosting Lower Lower ~0.9997
Decision Tree Higher Higher ~0.9996
Linear Regression Highest Highest ~0.983
XGBoost Lowest Lowest ~0.9999

From the performance results, XGBoost emerged as the best-performing model with the lowest MAE and
RMSE and the highest R? Score (~0.9999), indicating an exceptional fit to the data. The Random Forest model also
showed competitive performance with only a marginally lower score. On the other hand, Linear Regression, while
simpler and interpretable, yielded a significantly lower R? score, making it unsuitable for high-accuracy cost
breakdown predictions.

The accompanying bar plot visualization helped in comparative analysis of all models across the three
metrics. XGBoost consistently performed best across all categories, justifying its selection as the final deployment
model for the Flask application.

‘ Construction Sge Cost
i Forecasting

Fig. 5: Application for Construction Cost Estimation

V. CONCLUSION

In this study, we developed a machine learning-based system for construction cost estimation using a rich
dataset of 10,000 records collected from various sources. After performing thorough pre-processing and exploratory
data analysis, including skewness and kurtosis assessments, we trained and compared multiple regression models:
Linear Regression, Decision Tree, Random Forest, Gradient Boosting, and XGBoost. Among these, the XGBoost
model demonstrated superior performance with the lowest MAE and RMSE and the highest R? score, making it the
optimal choice for multi-output cost prediction.

To facilitate practical application, we integrated the trained model into a Flask-based web application with
a user-friendly interface, allowing users to input construction parameters and receive detailed cost estimates
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instantly. This work bridges the gap between complex ML models and real-world usability in the civil engineering
domain.

The results affirm that machine learning, particularly ensemble-based methods, can effectively and
accurately estimate granular and total construction costs, thus supporting architects, contractors, and planners in
making data-driven decisions. Future enhancements could include dynamic market integration for real-time rate
updates and the use of Explainable Al techniques for better interpretability of cost components.
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