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Abstract— Estimation of construction costs is considered as very important for effective budgeting, planning, and decision-making in 

civil infrastructure projects. The widely used traditional methods of construction cost estimation often rely on historical trends of the 

cost analysis, expert judgment, and manual calculations, the processes which can be time-consuming and prone to human error. This 

study proposes a machine learning-based approach to automate and enhance the accuracy of construction cost prediction using a 

multi-output regression framework a comprehensive dataset of 10,000 construction instances was compiled from various sources; it 

includes parameters such as material types, structural categories, area in square feet, and labour specifications among others. 

Multiple regression models including Random Forest, XGBoost, Gradient Boosting, Decision Tree, and Linear Regression were 

trained and evaluated using standard performance metrics which include Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R² Score. Among these, XGBoost outperformed all others with an R² score exceeding 0.999. To facilitate easy use, a 

Flask web application has been developed accordingly to deploy said models and deliver immediate predictions predicated-upon 

dynamic user inputs thus rendering estimation seamless & facilitating scalability. The proposed solution not only streamlines the 

estimation process but also provides a scalable and interpretable tool for engineers, contractors, and stakeholders. Experimental 

results demonstrate that ensemble learning models are highly effective in capturing the nonlinear relationships inherent in 

construction data, thereby offering a robust alternative to conventional estimation practices. 

Keywords— Construction Cost Estimation, Machine Learning, Multi-output Regression, XGBoost, Random Forest, Web 

Application, Civil Engineering, Predictive Modelling. 

I. INTRODUCTION 

Advanced computational techniques and machine learning algorithms have improved the traditional and 

software based construction cost estimation approaches. Various models have been developed to enhance the 

accuracy and efficiency of cost predictions in construction projects. For example if we consider, the use of improved 

support vector machines (SVM) optimized by particle swarm optimization (PSO) has shown promising results, 

achieving an average prediction deviation as low as 1.57% (Zhang & Song, 2022). Similarly, the BP neural network, 

which minimizes mean square errors through error gradient descent, has been effectively employed to forecast 

construction costs with high accuracy (Wang, 2018). The integration of Building Information Modeling (BIM) with 

Elman Neural Networks (ENN) further enhances prediction accuracy by utilizing digital and visual data from 

intelligent building models, achieving a root mean squared error (RMSE) of less than 75 and a determination 

coefficient greater than 0.95 (Zhang & Mo, 2023). Additionally, the Random Forest algorithm, optimized by the 

Bird Swarm Algorithm (BSA), has demonstrated superior performance in predicting construction costs, with a 

maximum relative error of only 1.24% (Zheng et al., n.d.). The application of artificial intelligence (AI) methods, 

including neural networks and case-based reasoning, has also been explored to address the challenges of large errors 

and long preparation times in cost estimation (“Research on Intelligent Prediction of Engineering Cost Based on 

Artificial Intelligence,” 2023). Moreover, the integration of quantum computing techniques with traditional 

algorithms like Random Forest has been proposed to further improve the efficiency and accuracy of cost predictions 

(Lakshana et al., 2024). These advancements highlight the potential of combining various machine learning and 

optimization techniques to develop robust construction cost prediction systems that can adapt to the dynamic 

conditions of construction projects, ultimately supporting better cost management and decision-making in the 

industry (Rayabharapu et al., 2025) (Shi & Li, 2010). 

Estimating construction costs is a vital aspect of construction management, playing a crucial role in 

determining project success through effective budgeting, resource allocation, and profitability. The inherently 

complex nature of construction projects necessitates precise cost estimation due to factors like inflation, market 

conditions, and specific elements such as structural systems and site environments (Ali et al., 2022; Ameya, 2025; 

G.C.Sarode, 2020). The adoption of advanced technologies like Artificial Intelligence (AI) and Building 
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Information Modeling (BIM) has improved the accuracy of these estimations. AI techniques such as extreme 

gradient boosting and artificial neural networks have shown high effectiveness in predicting costs by managing 

intricate non-linear challenges effectively (Ali et al., 2022) (G.C.Sarode, 2020). Similarly, BIM-based tools provide 

more reliable cost assessments than traditional methods by considering diverse aspects beyond just floor space 

beyond just floor area (Chandra & Yuliana, 2024) (Yang et al., 2022). The importance of continuous training and 

development for construction estimators is also emphasized, as it equips them with the necessary skills to utilize 

these advanced tools and methodologies, thereby reducing estimation errors and enhancing project outcomes (-, 

2023). Moreover, organizational controls play a significant role in improving cost estimation performance, 

especially in complex projects, by ensuring that the right control modes are implemented (Fazil et al., 2023). The 

use of machine learning methods, such as adaptive neuro-fuzzy inference systems and support vector machines, 

further supports the predictability and accuracy of cost estimations, outperforming traditional methods like earned 

value management-based approaches (Yalçın et al., 2024). Overall, the development and application of sophisticated 

cost estimation models are crucial for the effective management and successful completion of construction projects, 

providing stakeholders with reliable data for informed decision-making (Gilson & Vanreyk, 2016) (Naimi, 2023). 

This paper discusses the design and implementation of multiregrrssor construction cost estimation system that 

integrates various machine learning algorithms and optimization techniques to enhance prediction accuracy and 

reduce errors in cost estimation. This system aims to streamline the estimation process and improve decision- 

making efficiency in construction management. 

II. LITERATURE REVIEW 

Before starting the research work, a thorough literature review was conducted to understand the currently used 

techniques for construction cost estimation. Zheng et al. proposed a Random Forest model optimized by the Bird 

Swarm Algorithm (BSA), achieving a maximum relative error of only 1.24% and demonstrating superior enterprise- 

level forecasting accuracy. Magdum et al. implemented neural networks and multilayer perceptron (MLP)-based 

models using six key material features, finding MLPs better on training sets while neural networks generalized well 

on unseen data, with the ELU activation function performing best. Xu et al. introduced a hybrid model using t-SNE 

for dimensionality reduction and an improved grey correlation algorithm, yielding a 5.1% increase in accuracy and 

12.75% efficiency gain. Ye et al. enhanced BP neural networks with a PSO-guided optimization approach, 

effectively handling local minima and improving forecasting accuracy. Tayefeh Hashemi et al. presented a 

systematic review of three decades of ML models for cost estimation, recommending hybrid approaches to manage 

high-risk project uncertainty. Zhang et al. developed a BIM-ENN framework achieving over 95% accuracy in 

intelligent building projects while effectively processing time-sequential data. Jirait et al. created a GUI-based ML 

system for house construction cost estimation, emphasizing future integration with user-friendly interfaces. Park and 

Yun proposed a BIM-based deep learning model for schematic design phase cost prediction, showing higher 

accuracy by integrating design and building attributes. Yaseen et al. introduced a hybrid GA-ANN-SVM model for 

predicting construction cost and duration, where GA optimized feature selection, boosting ANN and SVM 

performance. Similarly, Liu et al. applied a GA-enhanced BP neural network, reporting significant improvements in 

accuracy and convergence over traditional BP networks. 

III. RESEARCH METHODOLOGY 

The development of the construction cost estimation system was executed in four phases: dataset collection and 

curation, data preprocessing, model development and training, and Flask-based deployment. Each phase is explained 

in detail below. 

 
A. Dataset Collection and Curation 

To construct a reliable prediction system, a comprehensive dataset comprising 10,000 instances was collected 

from multiple sources. These sources included government tender websites, construction contractor records, 

publicly available real estate project estimates, and market rate sheets for construction materials. The primary aim 

was to cover a wide range of project types, locations, and material quality grades to ensure generalization. Each data 
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entry captured key input attributes such as the category of location (urban, semi-urban, rural), built-up area in square 

feet, quality indicators for various construction components like cement, steel, bricks, and flooring, and the expected 

duration for project completion. The target outputs were detailed and included estimated quantities and associated 

costs of individual materials, as well as the total construction cost. This dataset provided a rich foundation for 

training a robust machine learning model capable of predicting detailed cost estimates for varying construction 

scenarios. 

B. Data Preprocessing 

Before we use the data to train the machine learning pipeline, preprocessing was carried out to improve 

consistency and model compatibility. All categorical variables representing material quality were encoded 

numerically (e.g., “Basic Grade” = 0, “Medium Grade” = 1, “Premium Grade” = 2). Missing or inconsistent entries 

were handled through imputation or removal, and feature scaling was performed where necessary. The dataset was 

then split into features (input variables) and multiple target outputs (quantities and costs). An 80:20 train-test split 

was applied to ensure fair model evaluation. 

C. Model Development and Training 

For predictive modeling, multiple machine learning algorithms were implemented using the 

MultiOutputRegressor wrapper to handle the multi-target regression task. The models included RF Regressor, 

Gradient Boosting Regressor, XGBoost, Decision Tree Regressor and Linear Regression. Each model was trained 

on the same training set and evaluated using key regression metrics: Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and R-squared Score (R²). Among these models which we trained, the XGBoost Regressor 

achieved the best overall performance giving the lowest MAE and RMSE values and the highest R² score, making it 

the ideal candidate for deployment. 

D. Deployment Via Flask Application 

To make the system accessible to non-technical users such as civil engineers and contractors, a user-friendly 

web interface was developed using the Flask framework. The interface provides a secure login and allows users to 

input various construction project parameters via dropdowns and text fields. Upon submission, the application 

processes the input through the trained XGBoost model and displays predicted quantities and costs for individual 

materials, along with the total estimated cost. This real-time prediction system enables users to efficiently plan 

budgets and make material procurement decisions. 

The architecture diagram of the flow of the project is as shown below in Figure 1 below: 

 

 

 
Fig.1: Architecture Diagram of the System 
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The proposed system architecture begins with collecting a diverse dataset of 10,000 construction cost records 

from government rate schedules, contractor cost sheets, and online market rates to capture regional and quality- 

based variations. The data then undergoes preprocessing, including label encoding for categorical material grades, 

imputation of missing values, and feature scaling to ensure consistency and readiness for modeling. A multi-output 

regression approach was applied using algorithms such as Random Forest, XGBoost, Linear Regression, and 

Gradient Boosting, with XGBoost achieving the best performance based on R² and error metrics. Finally, the trained 

model was deployed through a Flask-based web application with a user-friendly HTML interface, enabling users to 

input project parameters and receive detailed material-wise cost predictions, making the tool practical for builders, 

engineers, and homeowners. 

IV. RESULTS AND DISCUSSION 

The dataset, containing 10,000 entries of construction project parameters, underwent comprehensive exploratory 

data analysis to derive insights and validate its suitability for training predictive models. The univariate analysis was 

done to handle or visualize the distribution of each and every variable in the dataset. 

A. Exploratory Data Analysis 

The EDA was done on different input variables. The distribution of the PlaceCategory feature indicated a 

balanced representation of city types (Expensive, Medium, and Economical zones). Histograms plotted for 

numerical features such as SquareFeet, CementCost, SteelCost, and TotalCost demonstrated positively skewed 

distributions, reflecting real-world variability in material requirements and regional pricing. The univariate analysis 

concluded with different plots for all the parameters which is shown below in Figure 2. 
 

 
Fig.2: Univariate Analysis of Dataset 
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After that the corelation matrix was plotted as shown in Figure 3. A label-encoded correlation heatmap revealed 

strong linear dependencies between corresponding quantity and cost features (e.g., SteelQuantity and SteelCost), 

affirming the model's ability to capture logical pricing trends. Notably, TotalCost exhibited high correlation with 

variables like SteelCost, CementCost, and SquareFeet, indicating their dominant influence in overall expenditure. 

 

Fig.3 Correlation Matrix 

 

The dataset analysis revealed consistent multivariate trends between material quantities and their associated 

costs, as confirmed through pair plots and KDE-based scatter matrices (e.g., CementQuantity vs. CementCost and 

SteelQuantity vs. TotalCost), highlighting proportional scaling and meaningful dependencies. Distributional 

assessment using histograms and boxplots indicated that TotalCost was slightly right-skewed with a wider spread in 

higher-cost city categories, aligning with real-world scenarios where factors like material grade, region, and square 

footage drive nonlinear cost increases. Skewness and kurtosis analysis further showed moderate right skew in 

variables such as SteelCost, CementCost, and TotalCost, reflecting a few high-cost outliers, while kurtosis values 

below 3 for most cost-related attributes suggested platykurtic distributions with lighter tails and fewer extreme 

values compared to a normal distribution. 
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Fig.4: Skewness and Kurtosis Plot 

 

 

In terms of model performance, tree-based models like Random Forest and XGBoost were resilient to these 

distribution irregularities and performed robustly due to their non-parametric nature. In contrast, Linear Regression 

displayed reduced accuracy (R² ≈ 0.983) as it is sensitive to both skewness and outliers due to its assumption of 

linearity and constant variance (homoscedasticity). Although data transformations like log-scaling or Box-Cox 

transformation could further normalize the features, they were not required, as ensemble models performed 

sufficiently well on the raw data. The Dataset and its impact on model training is given in Table 1. 

 
TABLE I 

IMPACT ON MODEL TRAINING AND RELATED OBSERVATIONS 

 
Metric Interpretation Observation in Dataset Impact on Model Training 

Skewness Measures asymmetry of data 

distribution 

Moderate right skew in TotalCost, 

CementCost, SteelCost 

Tree-based models unaffected; Linear Regression 

performance degraded due to skew sensitivity 

Kurtosis Measures tailedness; >3 = 

peaked, <3 = flat 

Values < 3 → platykurtic 

distribution (light tails) 

Minimal impact on tree-based models; further 

optimization via transformation not necessary 

Linear 

Regression 

Assumes linearity and 

normality 

Underperformed with R² ≈ 0.983 Affected by skew/outliers due to parametric nature 

Ensemble 

Models 

Robust to non-normality and 

skewed features 

Delivered strong performance even 

with skewed data 

No need for transformation (e.g., Box-Cox, log 

scaling) due to inherent resilience 

 

Following exploratory analysis, a structured training phase was conducted using five regression algorithms 

to evaluate their performance on the construction cost dataset. The models implemented include Random Forest, 

Gradient Boosting, Decision Tree, Linear Regression, and XGBoost, all wrapped in a MultiOutputRegressor to 

simultaneously predict multiple dependent variables (quantities and costs of materials, and total cost). 

B. Model Training and Evaluation 

Standard regression metrics were used to evaluate on the 20 percent data post training. The performance 

obtained by training on different algorithms is given in Table 2. 
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TABLE II 

PERFORMANCE EVALUATION METRICS 

 

Model MAE RMSE R² Score 

Random Forest Low Low ~0.9998 

Gradient Boosting Lower Lower ~0.9997 

Decision Tree Higher Higher ~0.9996 

Linear Regression Highest Highest ~0.983 

XGBoost Lowest Lowest ~0.9999 

 

 

From the performance results, XGBoost emerged as the best-performing model with the lowest MAE and 

RMSE and the highest R² Score (~0.9999), indicating an exceptional fit to the data. The Random Forest model also 

showed competitive performance with only a marginally lower score. On the other hand, Linear Regression, while 

simpler and interpretable, yielded a significantly lower R² score, making it unsuitable for high-accuracy cost 

breakdown predictions. 

The accompanying bar plot visualization helped in comparative analysis of all models across the three 

metrics. XGBoost consistently performed best across all categories, justifying its selection as the final deployment 

model for the Flask application. 

 

 
Fig. 5: Application for Construction Cost Estimation 

 

 

V. CONCLUSION 

In this study, we developed a machine learning-based system for construction cost estimation using a rich 

dataset of 10,000 records collected from various sources. After performing thorough pre-processing and exploratory 

data analysis, including skewness and kurtosis assessments, we trained and compared multiple regression models: 

Linear Regression, Decision Tree, Random Forest, Gradient Boosting, and XGBoost. Among these, the XGBoost 

model demonstrated superior performance with the lowest MAE and RMSE and the highest R² score, making it the 

optimal choice for multi-output cost prediction. 

To facilitate practical application, we integrated the trained model into a Flask-based web application with 

a user-friendly interface, allowing users to input construction parameters and receive detailed cost estimates 
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instantly. This work bridges the gap between complex ML models and real-world usability in the civil engineering 

domain. 

The results affirm that machine learning, particularly ensemble-based methods, can effectively and 

accurately estimate granular and total construction costs, thus supporting architects, contractors, and planners in 

making data-driven decisions. Future enhancements could include dynamic market integration for real-time rate 

updates and the use of Explainable AI techniques for better interpretability of cost components. 

 
REFERENCES 

 
[1] Zheng, Z., Zhou, L., Zhou, L. “Construction Cost Prediction System Based on Random Forest Optimized by the Bird Swarm Algorithm,” Mathematical 

Biosciences and Engineering, 20(8), pp. 15044–15074, 2023. https://doi.org/10.3934/mbe.2023674 

[2] Magdum, S. K. Adamuthe, A. C. “Construction Cost Prediction Using Neural Networks,” ICTACT Journal on Soft Computing, 8(1), pp. 1549–1556, 

2017. 
[3] Xu, Y., Cao, S. “Building Engineering Cost Prediction Model Based on TSNE and Improved Grey Correlation Algorithm,” Procedia Computer Science, 

228, pp. 957–965, 2023. 

[4] Ye, D. “An Algorithm for Construction Project Cost Forecast Based on Particle Swarm Optimization-Guided BP Neural Network,” Scientific 

Programming, 2021, Article ID 4309495. 

[5] Hashemi, S. T. Ebadati, O. M. Kaur, H. “Cost Estimation and Prediction in Construction Projects: A Systematic Review on Machine Learning 

Techniques,” SN Applied Sciences, 2, Art. 1703, 2020. https://doi.org/] 
[6] Zhang, Y., Mo, H. “Intelligent Building Construction Cost Optimization and Prediction by Integrating BIM and Elman Neural Network,” Heliyon, 10(5), 

p. e37525, 2024. 
[7] Jirait, S., Rede, S. “House Construction Cost Prediction,” International Journal of Novel Research and Development, 9(5), pp. h311–h314, 2024. 

[8] Park, D., Yun, S. “Construction Cost Prediction Using Deep Learning with BIM Properties in the Schematic Design Phase,” Applied Sciences, 13(12), 

Art. 7207, 2023. 

[9] Yaseen, M., Shaker, A., Altaee, S. “Hybrid GA-ANN-SVM Model for Construction Cost and Time Estimation,” International Journal of Engineering and 

Technology, 7(3.20), pp. 1142–1147, 2018. 
[10] Liu, C., Li, Q., Wang, C. “Engineering Cost Estimation Model Based on GA-Optimized BP Neural Network,” SHS Web of Conferences, 170, p. 02009, 

2023. 

[11] Zhang, X., Song, J. “A Whole Process Cost Prediction System for Construction Projects Based on Improved Support Vector Machines,” 2022. 
https://doi.org/10.46300/9106.2022.16.34 

[12] Wang, X. “Forecasting Construction Project Cost Based on BP Neural Network,” 2018. https://doi.org/10.1109/ICMTMA.2018.00109 

[13] Zhang,  Y.,  Mo,  H.  “Intelligent  Building  Construction  Cost  Prediction  Based  on  BIM  and  Elman  Neural  Network,”  2023. 

https://doi.org/10.21203/rs.3.rs-3226303/v1 

[14] Zheng, Z., Zhou, L., Zhou, L. “Construction Cost Prediction System Based on Random Forest Optimized by the Bird Swarm Algorithm,” Mathematical 

Biosciences and Engineering, [online] Available at: https://doi.org/10.3934/mbe.2023674 [Accessed: 14 July 2025]. 
[15] “Research on Intelligent Prediction of Engineering Cost Based on Artificial Intelligence,” 2023. https://doi.org/10.25236/ijndes.2023.070110 

[16] Lakshana, J., Madhumitha, L., Dharshini, S. L. P. Kumar, T. R. “Cost Prediction for Home Construction Using Quantum Computing,” 2024. 

https://doi.org/10.4018/979-8-3693-3601-4.ch006 
[17] Rayabharapu, V. K. Rao, K. D. Punitha, S., Abbas, S. H. Sivaranjani, L. “Enhancing Construction Project Cost Predictions using Machine Learning,” 

2025. https://doi.org/10.2139/ssrn.5080704 
[18] Shi, H., Li, W. “A Web-Based Integrated System for Construction Project Cost Prediction,” 2010. https://doi.org/10.1007/978-3-642-05173-9_5 

[19] Ali, Z. H. Burhan, A. M. Kassim, M., Al-Khafaji, Z. H. K. “Developing an Integrative Data Intelligence Model for Construction Cost Estimation,” 2022. 
https://doi.org/10.1155/2022/4285328 

[20] Ameya, F. M. “Evaluation of the Ongoing Use of Approximate Construction Cost Estimation,” 2025. https://doi.org/10.20944/preprints202501.1900.v1 

[21] Sarode, G. C. E. C. S. “To Study Cost Prediction Analysis of Construction Project Using ANN Model and SVM by MATLAB,” 2020. 
[22] Chandra, A., Yuliana, C. “Estimation of Cost Budget Using BIM in School Construction,” 2024. https://doi.org/10.20527/crc.v8i5.13421 

[23] Yang, S.-W., Moon, S., Jang, H., Choo, S. Y. Kim, S.-A. “Parametric and BIM-Based Cost Estimation for Construction Projects,” 2022. 

https://doi.org/10.3390/app12199553 
[24] A. R. A. – “Training and Development for Construction Estimators,” 2023. https://doi.org/10.36948/ijfmr.2023.v05i06.10915 

[25] Fazil, M. W. Tamyez, P. F. M. Lee, C. K. “Enhancing Cost Estimation Performance Through Effective Control,” 2023. 

https://doi.org/10.1080/15623599.2023.2286048 
[26] Yalçın, G., Bayram, S., Çıtakoğlu, H. “Evaluation of Earned Value Management-Based Cost Estimation,” Buildings, 14(12), 372, 2024. 

https://doi.org/10.3390/buildings14123772 
[27] Gilson, N. K. Vanreyk, A. J. “Review of Cost Estimation Models,” 2016. https://doi.org/10.70729/ijser15714 
[28] Naimi, S. “Hybrid Importance Regression Ensemble for Cost Estimation,” 2023. https://doi.org/10.22306/al.v10i2.372 

Journal of Xidian University                                           https://doi.org/10.5281/Zenodo.17129584                                ISSN No:1001-2400

VOLUME 19, ISSUE 9, 2025                                                                                                                                http://xadzkjdx.cn/366

https://doi.org/10.3934/mbe.2023674
https://doi.org/10.46300/9106.2022.16.34
https://doi.org/10.1109/ICMTMA.2018.00109
https://doi.org/10.3934/mbe.2023674
https://doi.org/10.25236/ijndes.2023.070110
https://doi.org/10.2139/ssrn.5080704
https://doi.org/10.1155/2022/4285328
https://doi.org/10.20944/preprints202501.1900.v1
https://doi.org/10.20527/crc.v8i5.13421
https://doi.org/10.3390/app12199553
https://doi.org/10.36948/ijfmr.2023.v05i06.10915
https://doi.org/10.1080/15623599.2023.2286048
https://doi.org/10.3390/buildings14123772
https://doi.org/10.70729/ijser15714
https://doi.org/10.22306/al.v10i2.372

