APPLIED SCIENCE	Course Code : 312308
	: Automobile Engineering./ Agricultural Engineering/ Automation and Robotics/ Civil Engineering/ Civil & Rural Engineering/ Construction Technology/ Electrical Engineering/ Electrical
Programme Name/s	Power System/
	Instrumentation & Control/ Instrumentation/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Production Engineering
Programme Code	: AE/ AL/ AO/ CE/ CR/ CS/ EE/ EP/ IC/ IS/ LE/ ME/ MK/ PG
Semester	: Second
Course Title	: APPLIED SCIENCE
Course Code	: 312308

I. RATIONALE

Diploma engineers have to deal with various processes, materials and machines. The comprehension of concepts and principles of Science like Elasticity, motion, Oscillation, Photoelectricity, X rays ,LASER, Nanomaterials, metals, alloys, water treatment ,fuel and combustion, cells and batteries will help the students to use relevant materials ,processes and methods for various engineering applications .

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain following industry/ employer expected outcome through various teaching learning experiences. Apply the principles of physics and chemistry to solve broad-based engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Select relevant material in industries by analyzing its physical properties .
- CO2 Apply the concept of simple harmonic motion, resonance and ultrasonic sound for various engineering applications.
- CO3 Apply the concept of modern Physics (X-rays, LASER, Photosensors and Nanotechnology) for various engineering applications.
- CO4 Use the relevant metallurgical processes in different engineering applications.
- CO5 Use relevant water treatment processes to solve industrial problems.
- CO6 Use appropriate fuel and electrolyte for engineering applications.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	Learning Scheme					5		11	As	ssess	Assessment Scheme						
Course Code	e Course Title 4	Abbr	Course Category/s	Actual Contact Hrs./Wee		al ict ieek SLH		NLH	Credits	Paper		Theory		Based on LL & TL Practical		&	Based on SL		Total Morks		
				CL TL LL		. • * *	Duration	FA- TH	SA- TH	Tot	tal	FA-	PR	SA-	PR	SL	A	IVIAI KS			
	/ . A		1.12				1.1	1.1			Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312308	APPLIED SCIENCE	ASC	DSC	4	÷	4	-	8	4	1.5	30	70*#	100	40	50	20	50@	20	-	-	200

Total IKS Hrs for Sem. : 4 Hrs

APPLIED SCIENCE

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

• Candidate remaining absent in practical examination of any one part of Applied Science course i.e. Physics, Chemistry will be declare as Absent in Mark List and has to appear for examination. The marks of the part for which candidate was present will not be processed or carried forward.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Apply the concept of elasticity and plasticity to select the material for engineering applications. TLO 1.2 Establish relation between given types of moduli of elasticity. TLO 1.3 Predict the behavior of the given metallic wire. TLO 1.4 Explain the relevant Newton's laws of motion for the given moving object. TLO 1.5 Calculate the work, power, energy for the given situation.	 Unit - I Properties of matter and kinematics 1.1 Deforming Force and Restoring Force, Elasticity, Plasticity, Rigidity. 1.2 Stress and Strain and their types, elastic limit and Hooke's law, types of moduli of elasticity. 1.3 Stress -Strain diagram, Poisson's ratio, factors affecting elasticity 1.4 Newton's laws of motion, and their applications. 1.5 Angular displacement, angular velocity, angular acceleration, three equations of angular motion, projectile motion, trajectory, range of projectile angle of projection ,time of flight 1.6 Work, power and energy: potential energy, kinetic energy, work –energy principle. 	Improved lecture Video Demonstrations Model Demonstration

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	TLO 2.1 Find the parameters required to analyze the given wave motion and simple harmonic motion. TLO 2.2 Explain the concept of resonance and its applications. TLO 2.3 Describe the properties of given ultrasonic waves. TLO 2.4 Explain the given method of production of ultrasonic waves .	 Unit - II Waves and Oscillations 2.1 Sound waves, amplitude, frequency, time - period, wave-length and velocity of wave, relation between velocity, frequency and time - period of wave. 2.2 Simple Harmonic Motion , Uniform Circular Motion as Simple Harmonic Motion, Equation of simple harmonic motion , Phase of Simple Harmonic Motion. 2.3 Resonance , Application of resonance. 2.4 Resonance concept in prehistoric times, concept of different frequencies (Mantras) used to ignite different chakras in body (IKS). 2.5 Ultrasonic waves, properties of ultrasonic waves. 2.6 Piezoelectric and Magnetostriction method to produce ultrasonic waves . 2.7 Applications of ultrasonic waves. 	Improved lecture Demonstration Video Demonstrations
3	TLO 3.1 Explain properties of photon on basis Planck's hypothesis. TLO 3.2 Explain the construction and working of given photoelectric device. TLO 3.3 Explain the method to produce X-Rays with its properties and engineering applications. TLO 3.4 Differentiate between LASER and ordinary light. TLO 3.5 Explain the given terms related to LASER. TLO 3.6 Describe the properties of nanomaterials and its various applications.	 Unit - III Modern Physics (Photoelectricity , X rays, LASER and nanotechnology) 3.1 Planck's hypothesis, properties of photons. 3.2 Photo electric effect: threshold frequency, threshold wavelength, stopping potential, Work function, characteristics of photoelectric effect, Einstein's photoelectric equation 3.3 Photoelectric cell and LDR : principle ,Working and applications 3.4 Production of X-rays by modern Coolidge tube, properties and engineering applications. 3.5 Laser: properties, absorption, spontaneous and stimulated emission, 3.6 Population inversion, active medium, optical pumping, three energy level system, He-Ne Laser. 3.7 Engineering applications of Laser. 3.8 Nanotechnology : Properties of nanomaterials (optical, magnetic and dielectric properties) , applications of nanomaterials, Metallic Bhasma (Ancient Ayurveda, IKS). 	Improved lecture Presentations Demonstration Video Demonstrations

5

AFFLL	ピレう	UIENUI

embrittlement.

process.

TLO 5.4 Explain the given

type of water softening

TLO 5.5 Describe the

Wastewater treatment and

potable water treatment.

TLO 5.6 Solve numerical

based on pH and pOH.

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	TLO 4.1 Describe the extraction process of the ore. TLO 4.2 Explain Mechanical properties of metals. TLO 4.3 State purposes of making alloys. TLO 4.4 Describe methods of preparation of alloys. TLO 4.5 State Composition ,properties and applications of ferrous and nonferrous alloys.	 Unit - IV Metals and Alloys 4.1 Ancient Indian Metallurgy (IKS) 4.2 Metals: Occurrence of metals in free and combined state. Basic concepts : Mineral, ore, gangue, flux and slag, metallurgy. 4.3 Metallurgy:Extraction processes of metal from ore Concentration : Gravity separation, electromagnetic separation, froth floatation, calcination and roasting, Reduction : Smelting, aluminothermic process, Refining,poling , electrorefining. 4.4 Mechanical properties of metals :Hardness, ductility, malleability, tensile strength, toughness, machinability, weldability, forging, soldering, brazing, castability. 4.5 Alloys: Purposes of making alloys with examples. 4.6 Preparation methods of alloys : Fusion, compression. 4.7 Classification of alloys :Ferrous and non-ferrous alloys Ferrous alloys: Composition ,properties and applications of low carbon, medium carbon, high carbon steels. Non- ferrous alloy:Composition ,properties and applications of Brass, Bronze, Duralumin, Tinman Solder, Woods metal. 	Chalk-Board Demonstration Case Study Video Demonstrations
	TLO 5.1 Explain types of hardness of water. TLO 5.2 List salts causing temporary and permanent hardness to water. TLO 5.3 Describe boiler corrosion and caustic	Unit - V Water Treatment 5.1 Hard and soft water, causes of hardness, types of hardness 5.2 Hard water in boilers and prevention: Boiler corrosion, caustic embrittlement, priming and foaming, scales and sludges, and methods of prevention of boiler corrosion. 5.3 Methods of water softening: lime soda process (hot	Chalk-Board Demonstration

lime soda and cold lime soda process), zeolite process, ion

5.4 Potable water treatment: Sedimentation, coagulation,

5.5 Wastewater treatment: Sewage treatment, BOD and

5.6 pH and pOH: Concept of pH, pOH, pH Scale,

exchange process.

filtration and sterilization.

COD of sewage water.

Numerical.

Case Study

Demonstrations

Video

Course Code : 312308

TLO 6.7 Describe

TLO 6.8 Describe

construction and working of given cells and batteries.

production of green

6TLO 6.1 Describe the properties of the given type of fuel. TLO 6.2 Describe Proximate analysis and Ultimate analysis of coal samples. TLO 6.3 Calculate the calorific value of the given solid fuel using Bomb calorimeter. TLO 6.4 Describe fractional distillation of crude petroleum. TLO 6.5 Explain properties of liquid fuels. TLO 6.6 Describe composition, properties of given gaseous fuel with their applications.Unit - VI Fuels and Combustion 6.1 Fuel: Calorific value and ignition temperature, classification. 6.2 Solid fuels: Coal, Classification and composition , Proximate analysis, Ultimate analysis, Calorific value of coal by Bomb calorimeter. 6.3 Liquid fuels: Fractional distillation of crude petroleum, boiling range, composition, propertie Knocking, cracking, octane number and cetane number. 6.4 Gaseous fuels: Biogas, LPG, and CNG. Combustion equation of gaseous fuels, mass and volume of air required for complete combustion. 6.5 Green hydrogen: Producing green hydrogen by electrolysis from renewable sources , Advantages and disadvantages of green hydrogen. 6.6 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell composition, properties of given gaseous fuel with their applications.Chalk-Board Demonstration Case Study Video Demonstrations	Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
	6	TLO 6.1 Describe the properties of the given type of fuel. TLO 6.2 Describe Proximate analysis and Ultimate analysis of coal samples. TLO 6.3 Calculate the calorific value of the given solid fuel using Bomb calorimeter. TLO 6.4 Describe fractional distillation of crude petroleum. TLO 6.5 Explain properties of liquid fuels. TLO 6.6 Describe composition, properties of given gaseous fuel with their applications.	 Unit - VI Fuels and Combustion 6.1 Fuel: Calorific value and ignition temperature, classification. 6.2 Solid fuels: Coal, Classification and composition , Proximate analysis, Ultimate analysis, Calorific value of coal by Bomb calorimeter. 6.3 Liquid fuels: Fractional distillation of crude petroleum, boiling range, composition, propertie Knocking, cracking, octane number and cetane number. 6.4 Gaseous fuels: Biogas, LPG, and CNG. Combustion equation of gaseous fuels, mass and volume of air required for complete combustion. 6.5 Green hydrogen: Producing green hydrogen by electrolysis from renewable sources , Advantages and disadvantages of green hydrogen. 6.6 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell constant 	Chalk-Board Demonstration Case Study Video Demonstrations

6.7 Cells and batteries :Construction ,working and applications of dry cell, lead acid storage cell H2 - O2 fuel hydrogen by electrolysis. cell, Ni-Cd battery and Lithium ion battery

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Use Searle's method to determine the Young's modulus of given wire	1	* Determination of Young's modulus of given wire.	2	CO1
LLO 2.1 Compare young's modulii of different materials of wires .	2	Comparison of Young's modulii of given materials of wires.	2	CO1
LLO 3.1 Use of inclined plane to find the downward force.	3	* Determination of relationship between angle of inclination and downward force using inclined plane.	2	CO1
LLO 4.1 Use projectile motion to find the range from initial launch speed and angle	4	*Determination of range of projectile	2	CO1
LLO 5.1 Use helical spring to find force constant.	5	* Determination of force constant using helical spring.	2	CO2
LLO 6.1 Use resonance tube method to determine velocity of sound	6	* Determination of velocity of sound using resonance tube method.	2	CO2
LLO 7.1 Use Simple pendulum to find acceleration due to gravity .	7	* Determination of acceleration due to gravity by using simple pendulum .	2	CO2
LLO 8.1 Use ultrasonic distance – meter to measure distance of object.	8	Determination of distance of object using ultrasonometer.	2	CO2
LLO 9.1 Use ultrasonic interferometer to determine velocity of sound	9	Determination of velocity of ultrasonic sound waves in different liquids using ultrasonic interferometer.	2	CO2

Course Code: 312308

312308-APPLIED SCIENCE

Course	Code :	312308
Course	Cout	

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 10.1 Use photo electric cell to find dependence of the stopping potential on the frequency of given light source.	10	Determination of the dependence of the stopping potential on the frequency of given light source .(Virtual Lab)	2	CO3
LLO 11.1 Determine I-V characteristics of the given photo electric cell.	11	* Determination of I-V characteristics of photoelectric cell.	2	CO3
LLO 12.1 Determine I-V characteristics of given light dependent resistor.	12	* Determination of I-V characteristics of LDR.	2	CO3
LLO 13.1 Find divergence of given laser .	13	Determination of the divergence of laser beam.	2	CO3
LLO 14.1 Use LASER beam to find the refractive index of glass plate	14	Determination of refractive index of glass plate using laser beam. (Virtual Lab)	2	CO3
LLO 15.1 Find the wavelength of given laser.	15	Determination of wavelength of helium neon laser (Virtual Lab)	2	CO3
LLO 16.1 Prepare KMnO4 solution. LLO 16.2 Prepare standard oxalic acid. LLO 16.3 Standardize KMnO4 solution.	16	Standardization of KMnO4 solution using standard oxalic acid and preparation of Fe alloy sample.	2	CO4
LLO 17.1 Set up titration Assembly. LLO 17.2 Record the observations. LLO 17.3 Calculate percentage of iron in haematite ore by titration method .	17	* Determination of the percentage of iron present in given Haematite ore by KMnO4 solution.	2	CO4
LLO 18.1 Prepare Cu ore sample. LLO 18.2 Calculate percentage of Cu.	18	* Determination of percentage of copper in given copper ore .	2	CO4
LLO 19.1 Prepare EDTA solution of known concentration. LLO 19.2 Determine total hardness of water by titration.	19	*Calculation of total hardness, temporary hardness and permanent hardness of water sample by EDTA method.	2	CO5
LLO 20.1 Prepare acid solution of known concentration. LLO 20.2 Determine alkalinity of water sample.	20	* Determination of the alkalinity of a given water sample.	2	CO5
LLO 21.1 Determine turbidity by using a Nephelometer or simulation.	21	Determination of turbidity of a given water sample by Nephelometric method by using Nephelometer or simulation.	2	CO5
LLO 22.1 Set up titration Apparatus LLO 22.2 Record the observations. LLO 22.3 Calculate dissolved oxygen.	22	Determination of dissolved oxygen in the given water sample.	2	CO5
LLO 23.1 Prepare AgNO3 Solution of known concentration. LLO 23.2 Calculate chloride content in water sample.	23	Determination of chloride content in the given water sample by Mohr's method.	2	CO5
LLO 24.1 Use universal indicator for PH values. LLO 24.2 Calculate PH value by using PH meter.	24	* Determination of pH value of given solution using pH meter and universal indicator.	2	CO5

Course Code : 312308

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs		
LLO 25.1 Use of oven for appropriate temperature settings. LLO 25.2 Calculate moisture and ash content in coal samples.	25	* Determination of the moisture and ash content in a given coal sample using proximate analysis.	2	CO6		
LLO 26.1 Set up a Bomb Calorimeter. LLO 26.2 Calculate calorific value.	26	* Determination of calorific value of given solid fuel using Bomb calorimeter.	2	CO6		
LLO 27.1 Use gravimetric analysis method LLO 27.2 calculate the percentage of Sulphur.	27	Calculate the percentage of Sulphur in a given coal sample by ultimate analysis. (Gravimetric analysis)	2	CO6		
LLO 28.1 Standardize conductivity meter. LLO 28.2 Measure the conductance of given solutions.	28	Determination of conductance of given electrolyte by using a conductivity meter.	2	CO6		
LLO 29.1 Set up conductometric titration assembly. LLO 29.2 Record conductance. LLO 29.3 Determine specific conductance and equivalence conductance.	29	* Determination of specific conductance and equivalence conductance of given salt sample solution.	2	CO6		
LLO 30.1 Set up conductometric titration assembly. LLO 30.2 Record conductance. LLO 30.3 Determine equivalence point.	30	Determination of equivalence point of acetic acid and ammonium hydroxide using conductivity meter.	2	CO6		
Note : Out of above suggestive LLOs -	1.1.2					
 '*' Marked Practicals (LLOs) Are mandatory. Minimum 80% of above list of lab experiment are to be performed. Judicial mix of LLOs are to be performed to achieve desired outcomes. 						

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING) : NOT APPLICABLE

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Searle's apparatus(with slotted mass of 0.5 kg each)	1,2
2	Experimental setup for characteristics of LDR, optical bench .Source of light ,LDR .	11
3	Laser Source (He Ne, diode laser), optical bench, graph paper, glass plate	12,13,14
4	Nephelometer ; Auto-ranging from 20-200 NTU,+/- 2% of reading plus 0.1 NTU, power 220 Volts +/- 10% AC 50 Hz	21
5	pH meter reading up to pH14; ambient temp40 to 700 C.; pH/mV resolution:13 bit	24
6	Electric oven inner size 18"x18"x18"; temperature range 100 to 2500 C with the capacity of 40 lt.	25
7	Bomb calorimeter Temperature Resolution:0.001°C Oxygen Filling Automatic /Manual	26
8	Conductivity meter; conductivity range -0.01 uS /cm to 200 mS/cm, Cell constant $-$ digital 0.1 to 2.00; Temp. range -0 to 100° C	28,29,30
9	An inclined plane, a trolly or a roller, pan, weight box, spring balance spirit level, strong thread, meter scale.	3
10	Retort stand, helical spring, 6 slotted weight of 50 grams ., scale, stop watch.	4
11	Resonance tube, Tuning forks of different frequencies	5
12	Metallic bob, strong thread, stopwatch.	6
13	Ultrasonometer	7
14	ultrasonic interferometer	8

MSBTE Approval Dt. 11/09/2024

Course Code : 312308

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
15	Experimental setup for characteristics of photoelectric cell	9,10
16	Electronic balance, with the scale range of 0.001g to 500g. pan size 100 mm; response time 3-5 sec.; power requirement 90-250 V, 10 watt.	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks
1	Ι	Properties of matter and kinematics	CO1	9	3	4	4	11
2	II	Waves and Oscillations	CO2	10	3	5	4	12
3	III	Modern Physics (Photoelectricity, X rays, LASER and nanotechnology)	CO3	11	3	5	4	12
4	IV	Metals and Alloys	CO4	10	2	3	5	10
5	V	Water Treatment	CO5	8	3	4	4	11
6	VI	Fuels and Combustion	CO6	12	3	5	6	14
	1	Grand Total		60	17	26	27	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Two unit tests of 30 marks (Physics 15 marks, Chemistry-15 marks) and average of two unit tests.
- For laboratory learning 50 marks (Physics 25 marks, Chemistry-25 marks).

Summative Assessment (Assessment of Learning)

- End semester assessment of 50 marks for laboratory learning (Physics 25 marks, Chemistry-25 marks).
- End semester assessment of 70 marks through online MCQ examination.

XI. SUGGESTED COS - POS MATRIX FORM

			Progra	amme Outco	mes (POs)	B	7	Programme Specific Outcomes* (PSOs)		
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2	PSO- 3
CO1	3	1	1	1	1	1	2			
CO2	3	1	1	1	1	1	2			
CO3	3	2	1	1	1	1	2			
CO4	3	1		1	2	2	1			
CO5	3	2	1	2	2	2	1	ļ		
CO6	3	1	-	1	2	2	1	- 27		
Legends : *PSOs are	Legends :- High:03, Medium:02,Low:01, No Mapping: - *PSOs are to be formulated at institute level									

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Course Code : 312308

Sr.No	Author	Title	Publisher with ISBN Number
1	Aryabhatta	The Surya Siddhanta	Baptist mission press, Calcutta
2	Haliday, David; Resnik, Robert and Walker, Jearl	Fundamentals of Physics	John Wiley & sons, Hoboken, USA, 2014 ISBN : 812650823X.
3	Hussain Jeevakhan	Applied Physics II	Publisher: Khanna Book Publishing ISBN: 9789391505578.
4	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part I - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314
5	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part II - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506713
6	Jain and Jain	Engineering Chemistry	National Council of Education Research and Training, New Delhi, 2010, ISBN : 8174505083
7	Dara, S. S.	Engineering Chemistry	National Council of Education Research and Training, New Delhi, 2015, ISBN : 8174505660
8	Bagotsky V.S.	Fundamental of electrochemistry	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314.
9	Agnihotri Rajesh	Chemistry for Engineers	Wiley India Pvt. Ltd. New Delhi, 2014, ISBN: 9788126550784.
10	Anju Rawlley, Devdatta V. Saraf	Applied Chemistry with Lab Manual	Khanna Book Publishing Co. (P) Ltd. New Delhi, 2021, ISBN- 978-93-91505-44-8
11	Vairam S.	Engineering Chemistry	Wiley India Pvt. Ltd. New Delhi, 2013, ISBN: 9788126543342

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.iberdrola.com/sustainability/green-hydrogen	Green hydrogen
2	https://vedicheritage.gov.in/vedic-heritage-in-present-conte xt/metallurgy	Ancient indian metallurgy (IKS)
3	https://vlab.amrita.edu/?sub=2&brch=193∼=575&cnt=4	Determine turbidity by using a simulation
4	https://www.britannica.com/science/metallurgy	Metals and alloy
5	https://phet.colorado.edu/en/simulations/ph-scale	PH and POH
6	https://archive.nptel.ac.in/courses/103/105/103105110/	Solid fuel
7	www.physicsclassroom.com	Concepts of Physics
8	www.fearofphysics.com	Fundamental terms in Physics
9	https://iksindia.org	IKS
NI-4-		

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 11/09/2024

Semester - 2, K Scheme

APPLIED SCIENCE	Course Code : 312308
	: Automobile Engineering./ Agricultural Engineering/ Automation and Robotics/ Civil Engineering/ Civil & Rural Engineering/ Construction Technology/ Electrical Engineering/ Electrical
Programme Name/s	Power System/
	Instrumentation & Control/ Instrumentation/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Production Engineering
Programme Code	: AE/ AL/ AO/ CE/ CR/ CS/ EE/ EP/ IC/ IS/ LE/ ME/ MK/ PG
Semester	: Second
Course Title	: APPLIED SCIENCE
Course Code	: 312308

I. RATIONALE

Diploma engineers have to deal with various processes, materials and machines. The comprehension of concepts and principles of Science like Elasticity, motion, Oscillation, Photoelectricity, X rays ,LASER, Nanomaterials, metals, alloys, water treatment ,fuel and combustion, cells and batteries will help the students to use relevant materials ,processes and methods for various engineering applications .

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

The aim of this course is to attain following industry/ employer expected outcome through various teaching learning experiences. Apply the principles of physics and chemistry to solve broad-based engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Select relevant material in industries by analyzing its physical properties .
- CO2 Apply the concept of simple harmonic motion, resonance and ultrasonic sound for various engineering applications.
- CO3 Apply the concept of modern Physics (X-rays, LASER, Photosensors and Nanotechnology) for various engineering applications.
- CO4 Use the relevant metallurgical processes in different engineering applications.
- CO5 Use relevant water treatment processes to solve industrial problems.
- CO6 Use appropriate fuel and electrolyte for engineering applications.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	ear	ning	Sche	me		5		11	As	ssess	ment	Sche	eme				
Course Code	Course Title	Abbr	Course Category/s	A C Hrs	onta s./W	al ct eek	SLH	NLH	Credits	Paper		The	ory		Ba	sed o T Prac	n LL L tical	&	Base S	d on L	Total Morks
	1.1	- 1		CL	TL	LL			. • * *	Duration	FA- TH	SA- TH	Tot	tal	FA-	PR	SA-	PR	SL	A	IVIAI KS
	/ . A		1.12				1.1	1.1			Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312308	APPLIED SCIENCE	ASC	DSC	4	÷	4	-	8	4	1.5	30	70*#	100	40	50	20	50@	20	-	-	200

Total IKS Hrs for Sem. : 4 Hrs

APPLIED SCIENCE

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

• Candidate remaining absent in practical examination of any one part of Applied Science course i.e. Physics, Chemistry will be declare as Absent in Mark List and has to appear for examination. The marks of the part for which candidate was present will not be processed or carried forward.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Apply the concept of elasticity and plasticity to select the material for engineering applications. TLO 1.2 Establish relation between given types of moduli of elasticity. TLO 1.3 Predict the behavior of the given metallic wire. TLO 1.4 Explain the relevant Newton's laws of motion for the given moving object. TLO 1.5 Calculate the work, power, energy for the given situation.	 Unit - I Properties of matter and kinematics 1.1 Deforming Force and Restoring Force, Elasticity, Plasticity, Rigidity. 1.2 Stress and Strain and their types, elastic limit and Hooke's law, types of moduli of elasticity. 1.3 Stress -Strain diagram, Poisson's ratio, factors affecting elasticity 1.4 Newton's laws of motion, and their applications. 1.5 Angular displacement, angular velocity, angular acceleration, three equations of angular motion, projectile motion, trajectory, range of projectile angle of projection ,time of flight 1.6 Work, power and energy: potential energy, kinetic energy, work –energy principle. 	Improved lecture Video Demonstrations Model Demonstration

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	TLO 2.1 Find the parameters required to analyze the given wave motion and simple harmonic motion. TLO 2.2 Explain the concept of resonance and its applications. TLO 2.3 Describe the properties of given ultrasonic waves. TLO 2.4 Explain the given method of production of ultrasonic waves .	 Unit - II Waves and Oscillations 2.1 Sound waves, amplitude, frequency, time - period, wave-length and velocity of wave, relation between velocity, frequency and time - period of wave. 2.2 Simple Harmonic Motion , Uniform Circular Motion as Simple Harmonic Motion, Equation of simple harmonic motion , Phase of Simple Harmonic Motion. 2.3 Resonance , Application of resonance. 2.4 Resonance concept in prehistoric times, concept of different frequencies (Mantras) used to ignite different chakras in body (IKS). 2.5 Ultrasonic waves, properties of ultrasonic waves. 2.6 Piezoelectric and Magnetostriction method to produce ultrasonic waves . 2.7 Applications of ultrasonic waves. 	Improved lecture Demonstration Video Demonstrations
3	TLO 3.1 Explain properties of photon on basis Planck's hypothesis. TLO 3.2 Explain the construction and working of given photoelectric device. TLO 3.3 Explain the method to produce X-Rays with its properties and engineering applications. TLO 3.4 Differentiate between LASER and ordinary light. TLO 3.5 Explain the given terms related to LASER. TLO 3.6 Describe the properties of nanomaterials and its various applications.	 Unit - III Modern Physics (Photoelectricity , X rays, LASER and nanotechnology) 3.1 Planck's hypothesis, properties of photons. 3.2 Photo electric effect: threshold frequency, threshold wavelength, stopping potential, Work function, characteristics of photoelectric effect, Einstein's photoelectric equation 3.3 Photoelectric cell and LDR : principle ,Working and applications 3.4 Production of X-rays by modern Coolidge tube, properties and engineering applications. 3.5 Laser: properties, absorption, spontaneous and stimulated emission, 3.6 Population inversion, active medium, optical pumping, three energy level system, He-Ne Laser. 3.7 Engineering applications of Laser. 3.8 Nanotechnology : Properties of nanomaterials (optical, magnetic and dielectric properties) , applications of nanomaterials, Metallic Bhasma (Ancient Ayurveda, IKS). 	Improved lecture Presentations Demonstration Video Demonstrations

5

AFFLL	ピレう	UIENUI

embrittlement.

process.

TLO 5.4 Explain the given

type of water softening

TLO 5.5 Describe the

Wastewater treatment and

potable water treatment.

TLO 5.6 Solve numerical

based on pH and pOH.

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
4	TLO 4.1 Describe the extraction process of the ore. TLO 4.2 Explain Mechanical properties of metals. TLO 4.3 State purposes of making alloys. TLO 4.4 Describe methods of preparation of alloys. TLO 4.5 State Composition ,properties and applications of ferrous and nonferrous alloys.	 Unit - IV Metals and Alloys 4.1 Ancient Indian Metallurgy (IKS) 4.2 Metals: Occurrence of metals in free and combined state. Basic concepts : Mineral, ore, gangue, flux and slag, metallurgy. 4.3 Metallurgy:Extraction processes of metal from ore Concentration : Gravity separation, electromagnetic separation, froth floatation, calcination and roasting, Reduction : Smelting, aluminothermic process, Refining,poling , electrorefining. 4.4 Mechanical properties of metals :Hardness, ductility, malleability, tensile strength, toughness, machinability, weldability, forging, soldering, brazing, castability. 4.5 Alloys: Purposes of making alloys with examples. 4.6 Preparation methods of alloys : Fusion, compression. 4.7 Classification of alloys :Ferrous and non-ferrous alloys Ferrous alloys: Composition ,properties and applications of low carbon, medium carbon, high carbon steels. Non- ferrous alloy:Composition ,properties and applications of Brass, Bronze, Duralumin, Tinman Solder, Woods metal. 	Chalk-Board Demonstration Case Study Video Demonstrations
	TLO 5.1 Explain types of hardness of water. TLO 5.2 List salts causing temporary and permanent hardness to water. TLO 5.3 Describe boiler corrosion and caustic	Unit - V Water Treatment 5.1 Hard and soft water, causes of hardness, types of hardness 5.2 Hard water in boilers and prevention: Boiler corrosion, caustic embrittlement, priming and foaming, scales and sludges, and methods of prevention of boiler corrosion. 5.3 Methods of water softening: lime soda process (hot	Chalk-Board Demonstration

lime soda and cold lime soda process), zeolite process, ion

5.4 Potable water treatment: Sedimentation, coagulation,

5.5 Wastewater treatment: Sewage treatment, BOD and

5.6 pH and pOH: Concept of pH, pOH, pH Scale,

exchange process.

filtration and sterilization.

COD of sewage water.

Numerical.

Case Study

Demonstrations

Video

Course Code : 312308

TLO 6.7 Describe

TLO 6.8 Describe

construction and working of given cells and batteries.

production of green

6TLO 6.1 Describe the properties of the given type of fuel. TLO 6.2 Describe Proximate analysis and Ultimate analysis of coal samples. TLO 6.3 Calculate the calorific value of the given solid fuel using Bomb calorimeter. TLO 6.4 Describe fractional distillation of crude petroleum. TLO 6.5 Explain properties of liquid fuels. TLO 6.6 Describe composition, properties of given gaseous fuel with their applications.Unit - VI Fuels and Combustion 6.1 Fuel: Calorific value and ignition temperature, classification. 6.2 Solid fuels: Coal, Classification and composition , Proximate analysis, Ultimate analysis, Calorific value of coal by Bomb calorimeter. 6.3 Liquid fuels: Fractional distillation of crude petroleum, boiling range, composition, propertie Knocking, cracking, octane number and cetane number. 6.4 Gaseous fuels: Biogas, LPG, and CNG. Combustion equation of gaseous fuels, mass and volume of air required for complete combustion. 6.5 Green hydrogen: Producing green hydrogen by electrolysis from renewable sources , Advantages and disadvantages of green hydrogen. 6.6 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell composition, properties of given gaseous fuel with their applications.Chalk-Board Demonstration Case Study Video Demonstrations	Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
	6	TLO 6.1 Describe the properties of the given type of fuel. TLO 6.2 Describe Proximate analysis and Ultimate analysis of coal samples. TLO 6.3 Calculate the calorific value of the given solid fuel using Bomb calorimeter. TLO 6.4 Describe fractional distillation of crude petroleum. TLO 6.5 Explain properties of liquid fuels. TLO 6.6 Describe composition, properties of given gaseous fuel with their applications.	 Unit - VI Fuels and Combustion 6.1 Fuel: Calorific value and ignition temperature, classification. 6.2 Solid fuels: Coal, Classification and composition , Proximate analysis, Ultimate analysis, Calorific value of coal by Bomb calorimeter. 6.3 Liquid fuels: Fractional distillation of crude petroleum, boiling range, composition, propertie Knocking, cracking, octane number and cetane number. 6.4 Gaseous fuels: Biogas, LPG, and CNG. Combustion equation of gaseous fuels, mass and volume of air required for complete combustion. 6.5 Green hydrogen: Producing green hydrogen by electrolysis from renewable sources , Advantages and disadvantages of green hydrogen. 6.6 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell constant 	Chalk-Board Demonstration Case Study Video Demonstrations

6.7 Cells and batteries :Construction ,working and applications of dry cell, lead acid storage cell H2 - O2 fuel hydrogen by electrolysis. cell, Ni-Cd battery and Lithium ion battery

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Use Searle's method to determine the Young's modulus of given wire	1	* Determination of Young's modulus of given wire.	2	CO1
LLO 2.1 Compare young's modulii of different materials of wires .	2	Comparison of Young's modulii of given materials of wires.	2	CO1
LLO 3.1 Use of inclined plane to find the downward force.	3	* Determination of relationship between angle of inclination and downward force using inclined plane.	2	CO1
LLO 4.1 Use projectile motion to find the range from initial launch speed and angle	4	*Determination of range of projectile	2	CO1
LLO 5.1 Use helical spring to find force constant.	5	* Determination of force constant using helical spring.	2	CO2
LLO 6.1 Use resonance tube method to determine velocity of sound	6	* Determination of velocity of sound using resonance tube method.	2	CO2
LLO 7.1 Use Simple pendulum to find acceleration due to gravity .	7	* Determination of acceleration due to gravity by using simple pendulum .	2	CO2
LLO 8.1 Use ultrasonic distance – meter to measure distance of object .	8	Determination of distance of object using ultrasonometer.	2	CO2
LLO 9.1 Use ultrasonic interferometer to determine velocity of sound	9	Determination of velocity of ultrasonic sound waves in different liquids using ultrasonic interferometer.	2	CO2

Course Code: 312308

312308-APPLIED SCIENCE

Course	Code :	312308
Course	Cout	

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 10.1 Use photo electric cell to find dependence of the stopping potential on the frequency of given light source.	10	Determination of the dependence of the stopping potential on the frequency of given light source .(Virtual Lab)	2	CO3
LLO 11.1 Determine I-V characteristics of the given photo electric cell.	11	* Determination of I-V characteristics of photoelectric cell.	2	CO3
LLO 12.1 Determine I-V characteristics of given light dependent resistor.	12	* Determination of I-V characteristics of LDR.	2	CO3
LLO 13.1 Find divergence of given laser .	13	Determination of the divergence of laser beam.	2	CO3
LLO 14.1 Use LASER beam to find the refractive index of glass plate	14	Determination of refractive index of glass plate using laser beam. (Virtual Lab)	2	CO3
LLO 15.1 Find the wavelength of given laser.	15	Determination of wavelength of helium neon laser (Virtual Lab)	2	CO3
LLO 16.1 Prepare KMnO4 solution. LLO 16.2 Prepare standard oxalic acid. LLO 16.3 Standardize KMnO4 solution.	16	Standardization of KMnO4 solution using standard oxalic acid and preparation of Fe alloy sample.	2	CO4
LLO 17.1 Set up titration Assembly. LLO 17.2 Record the observations. LLO 17.3 Calculate percentage of iron in haematite ore by titration method .	17	* Determination of the percentage of iron present in given Haematite ore by KMnO4 solution.	2	CO4
LLO 18.1 Prepare Cu ore sample. LLO 18.2 Calculate percentage of Cu.	18	* Determination of percentage of copper in given copper ore .	2	CO4
LLO 19.1 Prepare EDTA solution of known concentration. LLO 19.2 Determine total hardness of water by titration.	19	*Calculation of total hardness, temporary hardness and permanent hardness of water sample by EDTA method.	2	CO5
LLO 20.1 Prepare acid solution of known concentration. LLO 20.2 Determine alkalinity of water sample.	20	* Determination of the alkalinity of a given water sample.	2	CO5
LLO 21.1 Determine turbidity by using a Nephelometer or simulation.	21	Determination of turbidity of a given water sample by Nephelometric method by using Nephelometer or simulation.	2	CO5
LLO 22.1 Set up titration Apparatus LLO 22.2 Record the observations. LLO 22.3 Calculate dissolved oxygen.	22	Determination of dissolved oxygen in the given water sample.	2	CO5
LLO 23.1 Prepare AgNO3 Solution of known concentration. LLO 23.2 Calculate chloride content in water sample.	23	Determination of chloride content in the given water sample by Mohr's method.	2	CO5
LLO 24.1 Use universal indicator for PH values. LLO 24.2 Calculate PH value by using PH meter.	24	* Determination of pH value of given solution using pH meter and universal indicator.	2	CO5

Course Code : 312308

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 25.1 Use of oven for appropriate temperature settings. LLO 25.2 Calculate moisture and ash content in coal samples.	25	* Determination of the moisture and ash content in a given coal sample using proximate analysis.	2	CO6
LLO 26.1 Set up a Bomb Calorimeter. LLO 26.2 Calculate calorific value.	26	* Determination of calorific value of given solid fuel using Bomb calorimeter.	2	CO6
LLO 27.1 Use gravimetric analysis method LLO 27.2 calculate the percentage of Sulphur.	27	Calculate the percentage of Sulphur in a given coal sample by ultimate analysis. (Gravimetric analysis)	2	CO6
LLO 28.1 Standardize conductivity meter. LLO 28.2 Measure the conductance of given solutions.	28	Determination of conductance of given electrolyte by using a conductivity meter.	2	CO6
LLO 29.1 Set up conductometric titration assembly. LLO 29.2 Record conductance. LLO 29.3 Determine specific conductance and equivalence conductance.	29	* Determination of specific conductance and equivalence conductance of given salt sample solution.	2	CO6
LLO 30.1 Set up conductometric titration assembly. LLO 30.2 Record conductance. LLO 30.3 Determine equivalence point.	30	Determination of equivalence point of acetic acid and ammonium hydroxide using conductivity meter.	2	CO6
Note : Out of above suggestive LLOs -	1.1.2			
 '*' Marked Practicals (LLOs) Are man Minimum 80% of above list of lab exp Judicial mix of LLOs are to be perforr 	datoı berim ned 1	ry. nent are to be performed. to achieve desired outcomes.		

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING) : NOT APPLICABLE

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Searle's apparatus(with slotted mass of 0.5 kg each)	1,2
2	Experimental setup for characteristics of LDR, optical bench .Source of light ,LDR .	11
3	Laser Source (He Ne, diode laser), optical bench, graph paper, glass plate	12,13,14
4	Nephelometer ; Auto-ranging from 20-200 NTU,+/- 2% of reading plus 0.1 NTU, power 220 Volts +/- 10% AC 50 Hz	21
5	pH meter reading up to pH14; ambient temp40 to 700 C.; pH/mV resolution:13 bit	24
6	Electric oven inner size 18"x18"x18"; temperature range 100 to 2500 C with the capacity of 40 lt.	25
7	Bomb calorimeter Temperature Resolution:0.001°C Oxygen Filling Automatic /Manual	26
8	Conductivity meter; conductivity range -0.01 uS /cm to 200 mS/cm, Cell constant $-$ digital 0.1 to 2.00; Temp. range -0 to 100° C	28,29,30
9	An inclined plane, a trolly or a roller, pan, weight box, spring balance spirit level, strong thread, meter scale.	3
10	Retort stand, helical spring, 6 slotted weight of 50 grams ., scale, stop watch.	4
11	Resonance tube, Tuning forks of different frequencies	5
12	Metallic bob, strong thread, stopwatch.	6
13	Ultrasonometer	7
14	ultrasonic interferometer	8

MSBTE Approval Dt. 11/09/2024

Course Code : 312308

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
15	Experimental setup for characteristics of photoelectric cell	9,10
16	Electronic balance, with the scale range of 0.001g to 500g. pan size 100 mm; response time 3-5 sec.; power requirement 90-250 V, 10 watt.	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	it Unit Title		Learning Hours	R- Level	U- Level	A- Level	Total Marks			
1	Ι	Properties of matter and kinematics	CO1	9	3	4	4	11			
2	II	Waves and Oscillations	CO2	10	3	5	4	12			
3	III	Modern Physics (Photoelectricity, X rays, LASER and nanotechnology)	CO3	11	3	5	4	12			
4	IV	Metals and Alloys	CO4	10	2	3	5	10			
5	V	Water Treatment	CO5	8	3	4	4	11			
6	VI	Fuels and Combustion	CO6	12	3	5	6	14			
Grand Total 60 17 26 27 7											

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Two unit tests of 30 marks (Physics 15 marks, Chemistry-15 marks) and average of two unit tests.
- For laboratory learning 50 marks (Physics 25 marks, Chemistry-25 marks).

Summative Assessment (Assessment of Learning)

- End semester assessment of 50 marks for laboratory learning (Physics 25 marks, Chemistry-25 marks).
- End semester assessment of 70 marks through online MCQ examination.

XI. SUGGESTED COS - POS MATRIX FORM

		Programme Outcomes (POs)													
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2	PSO- 3					
CO1	3	1	1	1	1	1	2								
CO2	3	1	1	1	1	1	2								
CO3	3	2	1	1	1	1	2								
CO4	3	1		1	2	2	1								
CO5	3	2	1	2	2	2	1	ļ							
CO6	3 1 - 1 2 2 1														
Legends : *PSOs are	- High:03, M e to be form	fedium:02 ulated at i	2,Low:01, No institute level	Mapping: -				Q							

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Course Code : 312308

Sr.No	Author	Title	Publisher with ISBN Number						
1	Aryabhatta	The Surya Siddhanta	Baptist mission press, Calcutta						
2	Haliday, David; Resnik, Robert and Walker, Jearl	Fundamentals of Physics	John Wiley & sons, Hoboken, USA, 2014 ISBN : 812650823X.						
3	Hussain Jeevakhan	Applied Physics II	Publisher: Khanna Book Publishing ISBN: 9789391505578.						
4	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part I - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314						
5	Narlikar, J.V.;Joshi , A. W.; Ghatak A.K. et al	Physics Textbook Part II - Class XII	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506713						
6	Jain and Jain Engineering Chemistry		National Council of Education Research and Training, New Delhi, 2010, ISBN : 8174505083						
7	Dara, S. S.	Engineering Chemistry	National Council of Education Research and Training, New Delhi, 2015, ISBN : 8174505660						
8	Bagotsky V.S.	Fundamental of electrochemistry	National Council of Education Research and Training, New Delhi, 2013, ISBN : 8174506314.						
9	Agnihotri Rajesh	Chemistry for Engineers	Wiley India Pvt. Ltd. New Delhi, 2014, ISBN: 9788126550784.						
10	Anju Rawlley, Devdatta V. Saraf	Applied Chemistry with Lab Manual	Khanna Book Publishing Co. (P) Ltd. New Delhi, 2021, ISBN- 978-93-91505-44-8						
11	Vairam S.	Engineering Chemistry	Wiley India Pvt. Ltd. New Delhi, 2013, ISBN: 9788126543342						

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description					
1	https://www.iberdrola.com/sustainability/green-hydrogen	Green hydrogen					
2	https://vedicheritage.gov.in/vedic-heritage-in-present-conte xt/metallurgy	Ancient indian metallurgy (IKS)					
3	https://vlab.amrita.edu/?sub=2&brch=193∼=575&cnt=4	Determine turbidity by using a simulation					
4	https://www.britannica.com/science/metallurgy	Metals and alloy					
5	https://phet.colorado.edu/en/simulations/ph-scale	PH and POH					
6	https://archive.nptel.ac.in/courses/103/105/103105110/	Solid fuel					
7	www.physicsclassroom.com	Concepts of Physics					
8	www.fearofphysics.com	Fundamental terms in Physics					
9	https://iksindia.org	IKS					
NI-4-							

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 11/09/2024

Semester - 2, K Scheme

Programme Name/s	: Automobile Engineering./ Mechanical Engineering/ Mechatronics/ Production Engineering/
Programme Code	: AE/ ME/ MK/ PG
Semester	: Second
Course Title	: ENGINEERING DRAWING
Course Code	: 312311

I. RATIONALE

Engineering drawing lays the foundation for visualizing the situation and delivering the essential instructions, required to carry out engineering jobs. This course aims at developing the ability to read and draw projection of lines, planes, solids. It also aims at reading and drawing the sections of the orthographic views. Engineering drawing also intends to develop the ability to visualize and draw curves of intersection and develop lateral surfaces of various solids

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Use different drawing instruments for solving broad based engineering problems.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Apply principles of sectional orthographic projections for drawing given pictorial views.
- CO2 Draw projection of lines and planes.
- CO3 Draw projections of given solids for various orientations.
- CO4 Interpret curves of intersection for given solids.
- CO5 Draw development of lateral surfaces of various solids.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	earı	ning	g Scheme		Þ	Assessment Scheme											
Course Code	e Course Title	Abbr	Course Category/s	A Co Hrs	ctua onta s./W	al ict eek	SLH	NLH	Credits	Paper	202	Theory			Based on LL & TL Practical		Based on SL		Total		
				CL	TL	LL	L			Duration	FA- TH	SA- TH	То	tal	FA-	PR	SA-	PR	SL	A	19141 85
											Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312311	ENGINEERING DRAWING	EDG	SEC	2	-	4	2	8	4	4	30	70	100	40	25	10	25@	10	25	10	175

Total IKS Hrs for Sem. : 4 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

MSBTE Approval Dt. 11/09/2024

V. TH	IEORY LEARNING OUTCO	OMES AND ALIGNED COURSE CONTENT				
Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.			
1	TLO 1.1 Draw different types of sectional views. TLO 1.2 Draw sectioning and hatching conventions. TLO 1.3 Develop sectional orthographic views from the pictorial views of given object. TLO 1.4 Interpret the given drawing.	 LO 1.1 Draw different pes of sectional views. LO 1.2 Draw sectioning id hatching conventions. LO 1.3 Develop sectional thographic views from the ctorial views of given oject. LO 1.4 Interpret the given awing. LO 1.4 Interpret the given awing. 				
2	TLO 2.1 Draw different position of lines with respect to projection planes. TLO 2.2 Draw projection of lines in various positions according to the given condition. TLO 2.3 Draw various types of planes based on their orientation. TLO 2.4 Draw projection of planes in various orientations according to the given condition.	 Unit - II Projection of Lines and Planes 2.1 Projection of straight lines involving following positions- i. Parallel to both the planes. ii. Perpendicular to one plane. iii. Inclined to one plane and parallel to the other plane. iv. Inclined to both the planes. 2.2 Traces of line. 2.3 Projection of planes involving following orientations- i. Plane parallel to one principal plane and perpendicular to the other plane. ii. Plane inclined to one principal plane and perpendicular to the other plane. 	Model Demonstration Video Demonstrations			
3	TLO 3.1 Draw projection of given regular solids. TLO 3.2 Draw projection of regular solids according to their orientation with planes. TLO 3.3 Interpret orientation of axis with respect to projection of planes of solids.	Unit - III Projection of Solids 3.1 Types of solids. 3.2 Projection of following solids- i. Regular polyhedron – Tetrahedron, Hexahedron (Cube) ii. Regular Prisms and Pyramids- Triangular, Square. iii. Regular solids of revolution- Cylinder, Cone. 3.3 Projection of given solids With Axis a. Perpendicular to one of the principal projection plane. b. Inclined to one of the principal plane and parallel to the other. c. Parallel to both principal planes.	Model Demonstration Video Demonstrations			
4	TLO 4.1 Interpret intersection for the given solids. TLO 4.2 Draw curves of intersection of the given solid combination.	 Unit - IV Intersection of Solids 4.1 Curves of intersection of surfaces - Prism with Prism (Triangular, Square), Cylinder with cylinder. 4.2 Curves of intersection of surfaces - Square Prism with Cylinder when - i. Axes are at 90° and bisecting. ii. Axes are at 90° and offset. 4.3 Curves of intersection of surfaces - Cylinder with Cone: when the axis of cylinder is parallel to both the reference planes and cone resting on base on HP with axis intersecting and offset from axis of cylinder. 	Model Demonstration Video Demonstrations Hands-on of the intersecting solids			

Course Code : 312311

Sr.No	Theory Learning Outcomes	Learning content mapped with Theory Learning	Suggested Learning
	(TLO's)aligned to CO's.	Outcomes (TLO's) and CO's.	Pedagogies.
5	TLO 5.1 Draw development of lateral surfaces of the given solid. TLO 5.2 Identify parts where concept of development of the given surfaces is required. TLO 5.3 Draw development of given sheet metal.	Unit - V Development of Surfaces 5.1 Developments of lateral surfaces of cube, prisms (Triangular, Square), cylinder, pyramids (Triangular, Square), cone. 5.2 Applications of development of surfaces such as tray, funnel.	Model Demonstration Video Demonstrations Hands-on to develop lateral surface from the existing solids

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Apply method of projection for drawing simple sectional orthographic views.	1	*Draw two problems on sectional orthographic projections (simple object) using first angle method of projection.	4	CO1
LLO 2.1 Apply method of projection for drawing simple sectional orthographic views.	2	*Draw two problems on sectional orthographic projections (object consisting of slot/rib/thread) using first angle method of projection.	4	CO1
LLO 3.1 Draw the projection of lines for the given positions of lines.	3	*Draw two problems on projection of lines showing the traces of line.	4	CO2
LLO 4.1 Draw the projection of planes for the given orientation of plane.	4	Draw two problems on projection of planes when plane is parallel to one principal plane and perpendicular to the other plane.	4	CO2
LLO 5.1 Draw the projection of planes for the given orientation of plane.	5	*Draw two problems on projection of planes when plane is inclined to one principal plane and perpendicular to the other plane.	4	CO2
LLO 6.1 Draw the projection of solids for the given position of plane.	6	*Draw any two problems on projection of solids with axis perpendicular to one of the principal projection planes.	4	CO3
LLO 7.1 Draw the projection of solids for the given position of plane.	7	*Draw any two problems on projection of solids with axis inclined to one of the principal plane and parallel to the other.	4	CO3
LLO 8.1 Draw the projection of solids for the given position of plane.	8	*Draw any two problems on projection of solids with axis parallel to both principal planes.	4	CO3
LLO 9.1 Draw the intersection of solids as per given situation.	9	Draw problems on intersection of solids when intersecting solids are -Prism with Prism, Cylinder with cylinder.	4	CO4
LLO 10.1 Draw the intersection of solids as per given situation.	10	 *Draw problems on intersection of solids when intersecting solid is - Square Prism with Cylinder when . 1. Axes are at 90° and bisecting. 2. Axes are at 90° and offset. 	4	CO4

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs						
LLO 11.1 Draw the intersection of solids as per given situation.	11	*Draw problems on intersection of solids when intersecting solids are Cylinder with Cone and the axis of cylinder is parallel to both the reference planes and cone resting on base on HP with axis intersecting and offset from axis of cylinder.	4	CO4						
LLO 12.1 Draw the developments of lateral surfaces of given object.	12	Draw problems on developments of lateral surfaces of cube, prisms.	4	CO5						
LLO 13.1 Draw the developments of lateral surfaces of given object.	13	*Draw problems on developments of lateral surfaces of cylinder, pyramids.	4	CO5						
LLO 14.1 Draw the developments of lateral surfaces of given object.	14	*Draw problems on developments of lateral surfaces of tray, funnel.	4	CO5						
LLO 15.1 Collect information of an ancient Indian culture related to engineering drawing.	15	*Prepare a report on the use of various solid geometrical shapes employed in ancient Indian constructions (IKS).	4	CO1 CO2 CO3 CO4 CO5						
Note : Out of above suggest • '*' Marked Practicals (L	Note : Out of above suggestive LLOs - CO5 • '*' Marked Practicals (LLOs) Are mandatory.									

- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Assignment

- Sectional Orthographic projections. Minimum 5 problems
- Projection of Lines. Minimum 5 problems
- Projection of planes. Minimum 5 problems
- Projection of solids. One problem for each type of solids.
- Intersection of solids surfaces. One problem for each type of solids.
- Development of lateral surfaces of solids. One problem for each type of solids.

Micro project

• Student should collect fabricated job/component nearby workshop/industries/ and try to show curves of intersections for different solid surfaces.

• Each student will assess at least one sheet of other students (May be a group of 4 students identified by teacher can be taken) and will note down the mistakes committed by them. Student will also guide the students for correcting the mistakes, if any.

• Students should collect component, job/sample from nearby workshops/industries and try to show the development of lateral surfaces of that.

• Each student should explain at least one problem for construction and method of drawing in sheet. Teacher will assign the problem of particular sheet to be explained to each student.

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Models of objects for sectional orthographic.	1,2
2	Models/charts/ animated video of development of lateral surfaces of various solids.	12,13,14
3	Models/ Charts/ animated video of objects mentioned in unit no.2.	3,4,5
4	Models/charts/ animated video of projections of different solids.	6,7,8
5	Models/charts/ animated video of intersections of various solids.	9,10,11
6	Drawing Table with Drawing Board of Full Imperial/ A1 size.	All
7	Set of various industrial drawings being used by industries.	All
8	Drawing equipment and instruments for class room teaching-large size: T-square or drafter (Drafting Machine). Set squares (45° and 30°-60°) Protractor. Drawing instrument box (containing set of compasses and dividers). Drawing sheets, Drawing pencils, Eraser, Drawing pins / clips.	All

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Sectional Orthographic Views	CO1	4	0	0	14	14
2	II	Projection of Lines and Planes	CO2	6	0	0	12	12
3	III	Projection of Solids	CO3	6	0	0	14	14
4	IV	Intersection of Solids	CO4	7	0	0	14	14
5	V	Development of Surfaces	CO5	7	0	0	16	16
		Grand Total		30	0	0	70	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Continous assessment based on process and product related performance indicators. Each practical will be assessed
- considering- -60% weightage to process -40% weightage to product
- Tests

Summative Assessment (Assessment of Learning)

- End term exam- Theory
- End term exam- Practical (Lab Performance)

XI. SUGGESTED COS - POS MATRIX FORM

	1		Progra	amme Outco	mes (POs)			Programme Specific Outcomes* (PSOs)									
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO-2	PSO- 3							
CO1	3	3	-	2	-	2	2	Ś									
CO2	3	3	-	2	-	2	2	Č.									
CO3	3	3	-	2	2	2	2	2	2	2	2	-	2	2			
CO4	3	3	2	2	-	2	2	3									
CO5	3	3	2	2	-	2	2										
Legends :	- High:03, N	Aedium:02	2,Low:01, No	Mapping: -													

*PSOs are to be formulated at institute level

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	Bureau of Indian	Engineering Drawing Practice for	Third Reprint, October 1998 ISBN No. 81-
1	Standards.	Schools and Colleges IS: SP-46	7061-091-2
2	Bhatt, N.D.	Engineering Drawing	Charotar Publishing House, 2010 ISBN No. 978-93-80358-17-8
3	Bhatt, N.D.; Panchal, V. M	Machine Drawing	Charotar Publishing House, 2010 ISBN No. 978-93-80358-11-6
4	Jolhe, D.A.	Engineering Drawing	Tata McGraw Hill Edu. New Delhi, 2010, ISBN No. 978-0-07-064837-1
5	Dhawan, R. K.	Engineering Drawing	S. Chand and Company New Delhi, ISBN No. 81-219-1431-0
6	Agrawal Basant , Agrawal C.M.	Engineering drawing	McGraw Hill Education ,New Delhi, ISBN No. 978-1259062889
7	Narayana, K.L., Kannaiah. P.	Engineering Drawing	Scitech PublicationsIndia, Chennai ISBN No-978-8183714433
8	Singhania Nitin	Indian Art And Culture	McGraw Hill, ISBN No-978-9354601804

XIII . LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://youtu.be/3VWnhRCF_0M	Sectional Orthographics
2	https://youtu.be/3WXPanCq9LI	Projection of lines
3	https://youtu.be/44glqyyw7OM	Projection of Plane
4	https://youtu.be/RE_ZG_SSsV8	Projection of solids
5	https://youtu.be/gIRsXiTKfDo	Projection of solids
6	https://youtu.be/q4uZYDtO05s	Projection of solids
7	https://youtu.be/rerGFp3V6W8	Intersection of solids
8	https://youtu.be/40pvNA0_sNM	Intersection of solids
9	https://youtu.be/P5oPrynRsTI	Development of lateral surfaces
10	https://youtu.be/vqk7SnpDQvg	Development of lateral surfaces

ENGINEERING D	RAWING	Course Code : 312311
Sr.No	Link / Portal	Description
Note :		
• Teachers are r online educati	equested to check the creative common license s onal resources before use by the students	status/financial implications of the suggested

MSBTE Approval Dt. 11/09/2024

Semester - 2, K Scheme

Programme Name/s	: Automobile Engineering./ Agricultural Engineering/ Civil Engineering/ Chemical Engineering/ Civil & Rural Engineering/ Construction Technology/ Civil & Environmental Engineering/ Mechanical Engineering/ Mechatronics/ Production Engineering
Programme Code	: AE/ AL/ CE/ CH/ CR/ CS/ LE/ ME/ MK/ PG
Semester	: Second
Course Title	: ENGINEERING MECHANICS
Course Code	: 312312

I. RATIONALE

The analysis of forces acting on various structural and machine components using principles of mechanics enable to fetch the relevant data for detailing with design of structure/machine. The analysis of forces helps to prevent the defects, errors and subsequent failures arising in such elements under the action of forces. This course is designed for diploma aspirants to acquire and apply the basic discipline knowledge to solve the practical problems related with the design and detailing of components related to civil, mechanical, agricultural engineering etc.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Apply the principles of engineering mechanics to solve the given engineering problem(s)

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Select the suitable machine under given loading condition.
- CO2 Analyze the given force system to calculate resultant force.
- CO3 Determine unknown force(s) of given load combinations in the given situation.
- CO4 Apply the laws of friction in the given situation.
- CO5 Determine the centroid/centre of gravity of the given lamina.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

			Course Category/s	L	earı	ning	g Sche	eme		Assessment Scheme											
Course Code	Course Title	Abbr		Actual Contact e Hrs./Week y/s SLH N		NLH	Credits	edits Paper		Theory			Based on LL & TL Practical			Based on SL		Total Mortes			
				CL	TL	LL				Duration	FA- SA- TH TH Total		FA-	-PR SA-PR		SLA		1 VIAI KS			
										1.11	Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312312	ENGINEERING MECHANICS	EGM	DSC	3	1	2	2	8	4	3	30	70	100	40	25	10	1	-	25	10	150

Total IKS Hrs for Sem. : 2 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Identify the type of machine based on efficiency of machine. TLO 1.2 Calculate effort required and load lifted by the given simple lifting machine. TLO 1.3 Verify law of machine for the given loading condition. TLO 1.4 Determine effort required along with efficiency for given machine with varying velocity ratio.	 Unit - I Simple Lifting Machine 1.1 Concept of simple lifting machine, load, effort, mechanical advantage, velocity ratio, efficiency of machines, reversible and non-reversible/self locking machines. (IKS*: Hand axe as wedge, Lever in battle, Inclined Plane for loading, Pulleys to lift water in irrigation) 1.2 Concept of ideal machine and its conditions, machine friction, ideal effort, ideal load, effort lost in friction and load lost in friction, maximum mechanical advantage and maximum efficiency. 1.3 Nature of graphs: Load vs. effort, load vs. ideal effort, load vs. MA, load vs. efficiency, Law of machine and its uses. 1.4 Velocity ratios of inclined plane, Differential axle and wheel, Worm and worm wheel, Single purchase and double purchase crab winch, Simple screw jack, Weston's differential pulley block, geared pulley block, two sheave pulley block, three sheave pulley block. 	Chalk-Board Video Demonstrations Presentations Demonstration Hands-on Case Study

Course Code : 312312

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
2	TLO 2.1 Describe the characteristics of given type of force. TLO 2.2 Calculate the moment of forces in a given force system. TLO 2.3 Suggest the suitable law for the analysis of given force system. TLO 2.4 Determine the components of given force. TLO 2.5 Calculate analytically the resultant of given force system. TLO 2.6 Calculate graphically the resultant of given force system	 Unit - II Analysis of Forces 2.1 Introduction of Mechanics: Engineering Mechanics, Statics, Dynamics, Kinetics, Kinematics, concept of rigid body, Force: definition, unit, graphical representation, Bow's notation, characteristics, Types of force system 2.2 Moment of force: Definition, unit, sign conventions, couple and its properties. 2.3 Law related to forces: Law of transmissibility of force, Law of polygon of forces, Varignon's theorem of moments, Law of moment, Law of parallelogram of forces. (IKS*:Weighing scale in Mohenjodaro, Harappa) 2.4 Resolution of coplanar forces: orthogonal and non orthogonal components of a force. 2.5 Composition of coplanar forces using analytical method. Resultant of collinear, concurrent and nonconcurrent force system. 2.6 Composition of coplanar forces using graphical method. Resultant of concurrent force system and parallel force system consisting of maximum four forces only. 	Chalk-Board Video Demonstrations Collaborative learning Presentations Hands-on Case Study
3	TLO 3.1 Draw the Free Body Diagram for given loading in given situation. TLO 3.2 Determine the equilibrant of the given concurrent force system. TLO 3.3 Use Lami's theorem to determine the unknown forces causing equilibrium for given practical situation. TLO 3.4 Identify the type of loading and beam in a given structure. TLO 3.5 Determine analytically the reactions in the given type of beam.	 Unit - III Equilibrium of Forces 3.1 Equilibrium and its conditions. 3.2 Equilibrant and relation with resultant, Equilibrant of concurrent force system. 3.3 Lami's Theorem and its applications, Concept of Free body diagram, (Problems having not more than two unknown.) 3.4 Types of supports: fixed, simple, hinged and roller. Types of beams: cantilever, simply supported, overhanging, continuous and fixed. Types of loads: vertical and inclined point load, uniformly distributed load (UDL). 3.5 Determination of Beam reactions using analytical method for cantilever, simply supported and overhanging beam subjected to vertical load, inclined load and uniformly distributed load (combination of any two types of loading). 	Chalk-Board Video Demonstrations Presentations Site/Industry Visit Hands-on Case Study
4	TLO 4.1 Determine friction force along with coefficient of friction for the given condition. TLO 4.2 Describe the conditions for friction for the give situation. TLO 4.3 Draw FBD and analyze it for equilibrium of bodies on inclined plane in the given situation. TLO 4.4 Draw free body diagram for showing forces acting on a ladder under given condition.	 Unit - IV Friction 4.1 Friction and its relevance in engineering, types and laws of friction, limiting equilibrium, limiting friction, co-efficient of friction, angle of friction, angle of repose, and their relationship. 4.2 Equilibrium of bodies on level surface subjected to force (Pull and Push) parallel to plane and inclined to plane. 4.3 Equilibrium of bodies on inclined plane subjected to force parallel to the plane only. 4.4 Forces acting on ladder (only free body diagram, no numerical). 	Chalk-Board Video Demonstrations Presentations Demonstration Case Study Hands-on

E

ENGINEERING MECHANICS

Course Code : 312312

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
5	TLO 5.1 Determine the centroid of given plane figure. TLO 5.2 Determine the centroid of given composite figure. TLO 5.3 Determine center of gravity of given solid. TLO 5.4 Determine Centre of gravity of the given composite solid.	 Unit - V Centroid and Centre of Gravity 5.1 Centroid of geometrical plane figures: square, rectangle, triangle, circle, semi-circle, quarter circle (IKS*: Archery arrowheads in Ramayana, Arch in archeological structures such as Mahal, Gol Gumbaz). 5.2 Centroid of composite figures such as L, T, I, C, Z sections consisting of not more than three simple figures. 5.3 Centre of Gravity of simple solids: cube, cuboid, cylinder, cone, sphere and hemisphere (no hollow solids). 5.4 Centre of Gravity of composite solids composed of not more than two simple solids. 	Chalk-Board Demonstration Video Demonstrations Model Demonstration Hands-on Case Study

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number	Relevant
Learning Outcome (LLO)	No	Tutorial Titles	of hrs.	COs
LLO 1.1 Identify the relevant component of IKS from the given content.	1	Collect the photographic information of Indian knowledge system (IKS) given in various unit	2	CO1 CO2 CO5
LLO 2.1 Use the Differential Axle & Wheel to calculate relevant parameters under different loading condition.	2	*Determine mechanical advantage and velocity ratio of differential axle and wheel for different loading conditions.	2	CO1
LLO 3.1 Use the worm and worm wheel to calculate relevant parameters under different loading condition.	3	Determine mechanical advantage and velocity ratio of worm and worm wheel for different loading conditions.	2	CO1
LLO 4.1 Use the single or Double purchase crab winch to calculate relevant parameters under different loading condition.	4	Determine mechanical advantage and velocity ratio of single or Double purchase crab winch for different loading conditions.	2	CO1
LLO 5.1 Use the simple screw jack to calculate relevant parameters under different loading condition.	5	*Determine mechanical advantage and velocity ratio of simple screw jack for different loading conditions.	2	CO1
LLO 6.1 Use the Weston's differential pulley block to calculate relevant parameters under different loading condition.	6	Determine mechanical advantage and velocity ratio of Weston's differential pulley block for different loading conditions.	2	CO1
LLO 7.1 Use the geared pulley block to calculate relevant parameters under different loading condition.	7	Determine mechanical advantage and velocity ratio of geared pulley block for different loading conditions.	2	CO1
LLO 8.1 Use the two or three sheave pulley block to calculate relevant parameters under different loading condition.	8	Determine mechanical advantage and velocity ratio of two or three sheave pulley block for different loading conditions.	2	CO1
LLO 9.1 Use the universal force table to verify the law of polygon.	9	*Verify law of polygon of forces using Universal force table for given forces.	2	CO2
LLO 10.1 Use moment apparatus to verify the law of moment.	10	*Verify law of moment of forces using law of moment apparatus for given forces.	2	CO2
LLO 11.1 Use universal force table to verify the Lami's theorem.	11	*Verify the Lami's theorem using Universal force table apparatus for given forces.	2	CO3
LLO 12.1 Use the beam reaction apparatus to determine support reactions of the given simply supported beam.	12	*Determine support reactions of simply supported beam using beam reaction apparatus for given vertical loading.	2	CO3

MSBTE Approval Dt. 11/09/2024

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 13.1 Use the horizontal plane friction apparatus for the given body to calculate coefficient of friction.	13	*Determine coefficient of friction using friction apparatus for given block on horizontal plane.	2	CO4
LLO 14.1 Use the inclined plane friction apparatus for the given body to calculate coefficient of friction.	14	Determine coefficient of friction using friction apparatus for given block on inclined plane.	2	CO4
LLO 15.1 Prepare a simple paper model of the given lamina to determine its centroid.	15	*Verify centroid of given plane lamina of by making simple paper model.	2	CO5

Note : Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

• Collect photographs of specific simple lifting machine and relate these machines with the machines being studied and prepare models of simple lifting machines using tools in "MECHANO" and "MECHANIX"

• Prepare chart of types of forces showing real-life examples.

• Prepare chart or flex of laws related to engineering mechanics like law of moment, law of machine, law of parallelogram of forces, Varignon's theorem of moments etc.

• Prepare chart showing all types of beams having types of support (roller, hinged, fixed) with sketches and corresponding photographs of real-life examples.

• Prepare models of types of beam subjected to all loads (Point load, UDL, UVL, moment, couple) with sketches and corresponding photographs of real-life examples.

• Prepare photographic chart showing real life examples of uses of friction on horizontal (walking, writing, etc.) and inclined plane (slider in gardens, loading of heavy material in trucks etc.).

• Collect minimum Ten sample of materials having different coefficient of friction.

• Prepare a chart showing comparison of centroid and center of gravity for square-cube, rectangle-cylinder, triangle-cone, circle-sphere, semicircle-hemisphere.

• Prepare a models of solids like square, rectangle triangle, circle, semicircle, cube, cuboid, cylinder, cone, sphere, hemisphere.

Assignment

• Solve the examples on calculation of values of MA, VR, Pi, Pf, Wi, Wf, law of machine etc. for given type of machine.

• Solve the examples on calculation of orthogonal or non-orthogonal components of a force.

- Solve the examples on calculation of moments of a force from given problem statement or figure.
- Solve the examples on calculation of resultant for given force system from given problem statement or figure.
- Solve the examples on calculation of unknown forces using Lamis theorem from given problem statement or figure.
- Solve the examples on calculation of support reactions of given beam from given problem statement or figure.

• Solve the examples on calculation of coefficient of friction, normal reaction, force required to pull or push the block for given case of frictional bodies (horizontal or inclined plane).

• Solve the examples on calculation of centroid of simple/composite plane figures from given problem statement or figure.

• Solve the examples on calculation of center of gravity for simple/composite solid bodies from given problem statement or figure.

ENGINEERING MECHANICS

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Simple axle and wheel (wall mounted unit with the wheel of 40 cm diameter and axles are insteps of 20 cm and 10 cm reducing diameter .	1
2	Law of moment's apparatus consisting of a stainless steel graduated beam 12.5 mm square in section, 1m long, pivoted at centre.	10,11
3	Beam Reaction apparatus (The apparatus is with two circular dial type 10 kg.)	15
4	Friction apparatus for motion along horizontal and inclined plane (base to which a sector with graduated arc and vertical scale is provided. The plane may be clamped at any angle up to 45 degrees. pan. Two weight boxes (each of 5 gm,10 gm, 2-20 gm, 2-50 gm, 2-100 gm weight)	16,17
5	Models of geometrical figures.	18
6	Differential axle and wheel (wall mounted unit with the wheel of 40 cm diameter and axles are insteps of 20 cm and 10 cm reducing diameter .	2
7	Worm and worm wheel (wall mounted unit with threaded spindle, load drum, effort wheel; with necessary slotted weights, hanger and thread)	3
8	Single Purchase Crab winch (Table mounted heavy cast iron body. The effort wheel is of C.I. material of 25 cm diameter mounted on a shaft of about 40mm dia. On the same shaft a geared wheel of 15 cm dia.	4
9	Double Purchase Crab winch (Having assembly same as above but with double set of gearing arrangement.)	5
10	Simple screw Jack (Table mounted metallic body, screw with a pitch of 5 mm carrying a double flanged turn table of 20 cm diameter.	6
11	Weston's Differential pulley block (consisting of two pulleys; one bigger and other smaller.	7
12	Weston's Differential worm geared pulley block (Consists of a metallic (preferably steel) cogged wheel of about 20 cm along with a protruded load drum of 10 cm dia. to suspend the weights of 10 kg, 20 kg-2 weights and a 50 kg weights)	8
13	Universal Force Table (Consists of a circular 40 cm dia. Aluminum disc, graduated into 360 degrees.) with all accessories.	9,14

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	Ι	Simple Lifting Machine	CO1	9	2	8	4	14
2	Π	Analysis of Forces	CO2	13	2	4	12	18
3	III	Equilibrium of Forces	CO3	9	2	8	4	14
4	IV	Friction	CO4	7	2	4	6	12
5	V	Centroid and Centre of Gravity	CO5	7	2	4	6	12
		Grand Total		45	10	28	32	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Term work (Lab Manual), Self-Learning (Assignment) Question and Answers in class room, quiz and group discussion. Note: Each practical will be assessed considering-60% weightage to process related and 40 % weightage to product related.

Summative Assessment (Assessment of Learning)

• Practical Examination, Oral Examination, Pen and Paper Test.

XI. SUGGESTED COS - POS MATRIX FORM

	1.1	5	Progra	amme Outco	mes (POs)		2.	Pro S Ou	ogram Specifi Itcom (PSOs)	me c es*)
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO-2	PSO- 3
CO1	1	1	1	2	1	-	1			
CO2	2	2	1	2	1	-	1			
CO3	2	2	1	2	1	-	1			
CO4	2	2	2	2	1	-	1			
CO5	2	2	1	2	1	-	1	2		
Legends : *PSOs are	- High:03, M e to be form	/ledium:02 ulated at i	2,Low:01, No nstitute level	Mapping: -					Y	

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	S. Ramamrutham	Engineering Mechanics	Dhanpat Rai Publishing Co. 2016 ISBN-13: 978- 9352164271
2	R. S. Khurmi, N.Khurmi	Engineering Mechanics	S.Chand & Co. New Delhi 2018 ISBN: 978-9352833962
3	S. S. Bhavikatti	Engineering Mechanics	New Age International Private Limited ISBN: 978- 9388818698
4	D. S. Bedi, M. P. Poonia	Engineering Mechanics	Khanna Publishing ISBN-13:978-9386173263
5	Dr. R. K. Bansal	Engineering Mechanics	Laxmi Publications ISBN 13: 9788131804094

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.engineersrail.com/simple-lifting-machine/	Introduction of simple lifting machine
2	https://youtu.be/JnYVz1TSmBQ	Law of machine and types of machines useful in industry.
3	https://youtu.be/vWXIQYRXewc	Introduction to engineering mechanics

https://services.msbte.edu.in/scheme_digi/pdfdownload/download/

Course Code : 312312

Sr.No	Link / Portal	Description
4	https://www.youtube.com/watch?v=6u_rjLjv- MY&list=PLOSWwFV98r fKXq2KBphJz95rao7q8PpwT&index=3	Introduction of force system with examples
5	https://www.youtube.com/watch? v=Fudcc0JoXdo&list=PLOSWwFV98r fKXq2KBphJz95rao7q8PpwT&index=4	Resolution and composition of forces
6	https://youtu.be/iy8l6vUm0iw	System of Forces
7	https://www.youtube.com/watch?v=tM5hsUiNpGA	Calculation of beam reactions for various types of beams
8	https://www.youtube.com/watch?v=RGT1g_lu440	Calculation of coefficient of friction for horizontal and inclined plane
9	https://youtu.be/L_ABGYA8HFA	Friction
10	https://youtu.be/ET3ioTDFpfA	Moment of Force
11	https://econtent.msbte.edu.in/econtent/econtent_home.php	Engineering Mechanics
Note		

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 11/09/2024

Semester - 2, K Scheme

Programme Name/s	: Automobile Engineering./ Mechanical Engineering/ Mechatronics/ Production Engineering/
Programme Code	: AE/ ME/ MK/ PG
Semester	: Second
Course Title	: MANUFACTURING TECHNOLOGY
Course Code	: 312313

I. RATIONALE

Diploma graduates frequently encounter diverse manufacturing processes. This core manufacturing technology course aims to enhance student's comprehension of manufacturing methods, like turning, drilling, milling, casting, forming, and joining, etc.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Produce a given component using various manufacturing processes.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Produce a part using a lathe and drilling machine as per given drawing.
- CO2 Produce a part using a milling machine as per given drawing.
- CO3 Produce a part using casting processes as per given drawing.
- CO4 Produce a part using forming processes as per given drawing.
- CO5 Produce a part using joining processes as per given drawing...

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

		Ì		L	ear	ninş	g Sch	eme		· · · · ·		7.1	Α	ssess	ment	Sch	eme				
Course Code	Course Title	Abbr	Course Category/s	A C Hrs	onta s./W	al act /eek	SLH	NLH	Credits	Paper		The	eory	ľ	Ba	sed o T Prac	n LL L tical	&	Base Si	d on L	Total
	1 . 6 .			CL	TL	LL		1.1		Duration	FA- TH	SA- TH	То	tal	FA	PR	SA-	PR	SL	A	Marks
			1 - C.								Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	
312313	MANUFACTURING TECHNOLOGY	MPR	DSC	3	-	4	1	8	4	3	30	70	100	40	25	10	25@	10	25	10	175

Total IKS Hrs for Sem. : 1 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination, @\$ Internal Online Examination Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Course Code : 312313

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 List various angles of single point cutting tool. TLO 1.2 List accessories of lathe machine and their function. TLO 1.3 Calculate machining parameters for given component. TLO 1.4 Describe construction and specification of a drilling machine. TLO 1.5 List various drilling operations	 Unit - I Fundamentals of Lathe and drilling machines 1.1 Basics of Machining: Single point cutting Tool and its nomenclature, Mechanics of Chip formation, Types of Chips. 1.2 Lathe machine: Classification, specification of centre lathe; Basic parts and accessories like chucks (three jaw, four jaw, and magnetic chuck), mandrels, rests, faceplate, centres and angle plate of centre lathe and their functions. 1.3 Lathe operations: facing, plain turning, taper turning, thread cutting, chamfering, grooving, knurling and cutting parameters like speed, feed, depth of cut and machining time. 1.4 Drill machine: Classification, specification of drilling machine Basic parts of radial drilling machine, Sensitive drilling and their function. 1.5 Drilling machine operations: Drilling, reaming, boring, counter sinking, counter boring, spot facing and Cutting parameters- speed, feed, depth of cut and machining time. 	Model Demonstration Video Demonstrations
2	TLO 2.1 Demonstrate working of milling machines. TLO 2.2 Select appropriate milling cutter for given component. TLO 2.3 Describe milling operations for given component. TLO 2.4 Illustrate procedure of indexing methods.	 Unit - II Milling Machines 2.1 Milling Machine: Working principle, types of milling machines. 2.2 Milling cutter: Different types of cutters, face milling cutters end milling cutters, staggered tooth milling cutter, side and face milling cutter, form milling cutters and metal slitting saw. 2.3 Milling Process: Plain milling, face milling, side milling, end milling, straddle milling, gang milling, up and down milling. 2.4 Dividing head; Types, function of dividing head, method of indexing. 	Model Demonstration Video Demonstrations
3	TLO 3.1 Describe significance of pattern allowances. TLO 3.2 Describe moulding methods. TLO 3.3 Classify casting processes. TLO 3.4 Enumerate safety guidelines and precautions for a foundry workshop.	 Unit - III Casting processes 3.1 Pattern making: Basic steps in making pattern, types, materials and allowances, Color coding of pattern. 3.2 Moulding: Types and properties of moulding sands, moulding methods, cores and core prints, gating and risering system. 3.3 Casting: Casting in Indus valley civilization (IKS), Centrifugal casting, investment casting, shell moulding and applications, Casting defects-causes and remedies. 3.4 Safety practices/ precautions in foundry shop. 	Chalk-Board Model Demonstration Video Demonstrations
4	TLO 4.1 Select the relevant forming process for given component. TLO 4.2 Differentiate rolling and forging process. TLO 4.3 List various press tool operations for given component. TLO 4.4 Enumerate safety guidelines and precautions for a forging/press shop	 Unit - IV Forming processes 4.1 Drop forging: Introduction to forging, upset forging, Press forging, open die and closed die forging operations. 4.2 Rolling: Principle of rolling, hot and cold rolling and applications, rolling mill. 4.3 Press tool: Various operations performed on press, press tool, simple, progressive and forming dies and applications. 4.4 Safety practices/ precautions in forging and press shop. 	Chalk-Board Model Demonstration

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
5	TLO 5.1 Select suitable welding process for given component. TLO 5.2 Describe gas welding process. TLO 5.3 Differentiate various arc welding processes. TLO 5.4 Compare soldering and brazing process. TLO 5.5 List causes of welding defects and suggest remedies. TLO 5.6 Enumerate safety guidelines and precautions for a welding shop.	 Unit - V Metal joining processes 5.1 Welding Processes: welding and weldability, types and classification of welding processes. 5.2 Gas welding: gas welding equipments, oxy-acetylene welding, types of flame. 5.3 Arc welding: arc welding equipment equipments, flux shielded metal arc welding, TIG and MIG welding. 5.4 Soldering and brazing process, Comparison, fillers, merits, demerits and applications. 5.5 Defects in welding joints: causes and remedies. 5.6 Safety practices/ precautions in welding shop. 	Chalk-Board Demonstration

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs	Relevant
LLO 1.1 Setup a lathe machine for given job as per operations. LLO 1.2 Select suitable cutting parameters for operations as per given job. LLO 1.3 Prepare a turning job as per given drawing.	1	*Produce a job on a lathe machine that comprises facing, plain turning and step turning operations as per the given drawing.	4	C01
LLO 2.1 Setup a lathe machine for taper turning operations. LLO 2.2 Calculate taper angle for taper turning operations as per given job. LLO 2.3 Prepare a taper turning job as per given drawing.	2	*Produce a job on a lathe machine that comprises taper turning and grooving operations as per the given drawing.	4	CO1
LLO 3.1 Setup a lathe machine for chamfering and knurling operations. LLO 3.2 Select suitable cutting parameters for chamfering and knurling operations. LLO 3.3 Prepare a chamfering and knurling job as per given drawing.	3	*Produce a job on a lathe machine that comprises knurling and chamfering operations as per the given drawing.	4	CO1
LLO 4.1 Setup a drill machine for given job as per operations. LLO 4.2 Prepare a drilling job as per given drawing.	4	*Produce a job on a drilling machine comprising drilling and reaming operations as per the given drawing.	4	CO1
LLO 5.1 Setup a drill machine and tool for given job as per operations. LLO 5.2 Prepare a tapping job as per given drawing.	5	*Produce a job on drilling machine comprising tapping operation as per the given drawing.	4	CO1

MANUFACTURING TECHNOLO	ourse Cod	e : 312313		
Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 6.1 Setup a drill machine and tool for given job as per operations. LLO 6.2 Prepare a counter-boring job as per given drawing.	6	Produce a job on a drilling machine comprising counter-boring operation as per the given drawing.	4	CO1
LLO 7.1 Setup a milling machine and cutter for given job. LLO 7.2 Prepare a job on milling machine as per the given drawing.	7	Produce a job on a milling machine that comprises of plain milling operation as per the given drawing.	4	CO2
LLO 8.1 Setup a milling machine and side milling cutter for given job. LLO 8.2 Prepare a job on milling machine as per the given drawing.	8	Produce a job on a milling machine that comprises of side milling operation as per given drawing.	4	CO2
LLO 9.1 Setup a milling machine and cutter for given job. LLO 9.2 Use dividing head for indexing. LLO 9.3 Prepare a spur gear on milling machine as per the given drawing.	9	*Produce a spline shaft with 3 slots using indexing mechanism as per the given drawing.	4	CO2
LLO 10.1 Select material and tool for preparing pattern. LLO 10.2 Prepare wooden pattern as per given drawing.	10	*Produce a simple wooden pattern for the given component.	4	CO3
LLO 11.1 Choose appropriate sand and tools for moulding a given pattern. LLO 11.2 Prepare a mould for given pattern.	11	*Produce a sand mould for the given pattern.	4	CO3
LLO 12.1 Select suitable material and melt it for required casting. LLO 12.2 Prepare casting as per given drawing.	12	*Produce a casting from the given mould.	4	CO3
LLO 13.1 Identify various components of forging machine. LLO 13.2 Enlist various forging operations. LLO 13.3 Identify need of safety while working in forging shop.	13	Demonstrate components of a forging machine and its safety considerations.	4	CO4
LLO 14.1 Select tool for producing given job. LLO 14.2 Prepare a bolt head/a cold chisel/hook as per given drawing.	14	*Produce a bolt head/cold chisel/hook using forging.	4	CO4
LLO 15.1 Identify various components of rolling mill/machine. LLO 15.2 Enlist rolling methods used in industries. LLO 15.3 Identify need of safety while working rolling shop.	15	Demonstrate the various parts of rolling mill/machine and various safety aspects of it.	4	CO4

TANUFACTURING TECHNOLOGY Course Coue : 5125						
Practical / Tutorial / Laboratory	Sr	Laboratory Experiment / Practical Titles /	Number	Relevant		
Learning Outcome (LLO)	No	Tutorial Titles		COs		
LLO 16.1 Identify various components of Press tool. LLO 16.2 Identify type of die used for production of washer. LLO 16.3 Identify need of safety while working in press shop.	16	Demonstrate production process of washer.	2	CO4		
LLO 17.1 Prepare material for fabricating structure. LLO 17.2 Select suitable equipment and tool for welding. LLO 17.3 Fabricate structure as per given drawing.	17	*Fabricate structure using arc welding machine as per given drawing.	4	CO5		
LLO 18.1 Prepare joint for soldering/brazing by applying flux. LLO 18.2 Perform soldering/brazing operations on the given components.	18	*Perform soldering/brazing operations on the given components.	2	CO5		
LLO 19.1 Enlist various welding defects and their causes. LLO 19.2 Identify casting defects in the given welded joints.	19	Identify various welding defects from given castings.	2	CO5		
Note : Out of above suggestive LLOs -						
• '*' Marked Practicals (LLOs) Are mandatory.						
 Minimum 80% of above list of lab experiment are to be performed. Judicial mix of LLOs are to be performed to achieve desired outcomes. 						

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Assignment

- Justify why lathe machine is called mother of all machines.
- Collect information regarding car bonnet manufacturing in automobile industry.
- Collect information of material used for preparation of pattern.
- Justify necessity of safety precaution in industries.
- Prepare a list of machine tools seen in the industry during industrial visit.

Micro project

- Collect specifications of machine tools available in the industry you have visited.
- Prepare a list of similar operations that can be performed on different machine tools along with their specifications.
- Collect different welding equipments required for a welding shop.
- Collect a information about operations required for key manufacturing.
- Prepare a list of machine tools available in the workshop of the institute with their specifications.

Note :

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Centre lathe machine. (Length between canters 1000 mm, swing 500 mm)	1,2,3
2	Pattern making, moulding and casting shop with necessary equipment.	10,11,12
3	Mini forging press (Capacity upto 1 ton)	13,14
4	Rolling mill (Laboratory type)	15
5	Mini press tool (Capacity upto 1 ton)	16
6	TIG/MIG welding equipmet (upto 160 A, 240 Volts)	17,18,19
7	Drilling Machine (drill diameter up to 40 mm)	4,5,6
8	Column and knee type milling machine along with dividing head (length X width of working table 1000 mm X 500)	7,8,9

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks
1	Ι	Fundamentals of Lathe and drilling machines	CO1	10	4	6	6	16
2	II	Milling Machines	CO2	9	4	6	6	16
3	III	Casting processes	CO3	9	2	6	4	12
4	IV	Forming processes	CO4	8	2	4	4	10
5	V	Metal joining processes	CO5	9	4	8	4	16
		Grand Total	45	16	30	24	70	

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

- Tests
- Seminar/Presentation
- Term Work

Summative Assessment (Assessment of Learning)

- Practical
- Theory

MSBTE Approval Dt. 11/09/2024

XI. SUGGESTED COS - POS MATRIX FORM

		Programme Outcomes (POs)											
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO-2	PSO- 3			
CO1	3	2	2	2	-	2	2						
CO2	3	2	2	2	-	2	2	14					
CO3	3	2	2	2	-	2	2						
CO4	3	2	2	2	-	2	2						
CO5	3	2	2	2	-	2	2			1			
Legends : *PSOs are	Legends :- High:03, Medium:02,Low:01, No Mapping: - *PSOs are to be formulated at institute level												

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number
1	P N RAO	Manufacturing Technology Vol-1	McGraw Hill, New Delhi. ISBN- 1259062570, 9781259062575
2	P N RAO	Manufacturing Technology Vol-2	McGraw Hill, New Delhi, ISBN: 9789353160524
3	S K Hajra Choudhury, A K Hajra Choudhury, Nirjhar Roy	Elements Of Workshop Technology Vol- 1	Media Propoters & Publisher PVT. LMT. ISBN-13 5551234102415
4	S K Hajra Choudhury, A K Hajra Choudhury, Nirjhar Roy	Elements Of Workshop Technology Vol- 2	Media Propoters & Publisher PVT. LMT., ISBN: 978-8-185-09915-6.
5	D.P. Agrawal	Ancient Metal Technology and Archaeology of South Asia: a Pan-Asian perspective	Aditya Prakashan, New Delhi. ISBN: 9788173051777

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://www.youtube.com/watch?v=Wc2gpWcmGK4	Lathe Machine Operations
2	https://www.youtube.com/watch?v=DGsV6RhBnbM	Radial drilling machine
3	https://www.youtube.com/watch?v=zzXdddrV2so	Simple Job on milling machine
4	https://www.youtube.com/watch?v=2CIcvB72dmk	Basics of Metal Casting
5	https://www.youtube.com/watch?v=-w7E88zox6w	Closed die forging
6	https://www.youtube.com/watch?v=RyLvVMg84xs	Basics of welding process

Note :

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 11/09/2024

Semester - 2, K Scheme